
Finding Locally Smallest Cut Sets using Max-SMT
Daniel Larraz, Cesare Tinelli

The University of Iowa

USA

Abstract
Model-based development (MBD) is increasingly being used

for system-level development of safety-critical systems. This

approach allows safety engineers to leverage the system

model created during the MBD process to assess the system’s

resilience to component failure. In particular, one fundamen-

tal activity is the identification of minimal cut sets (MCSs),

i.e, minimal sets of faults that lead to the violation of a safety

requirement. Although the construction of a formal system

model enables safety engineers to automate the generation

of MCSs, this is usually a computationally expensive task for

complex enough systems. We present a method that lever-

ages Max-SMT solvers to efficiently obtain a small set of

faults based on a local optimization of the cut set cardinality.

Initial experimental results show the effectiveness of the

method in generating cut sets that are close or equal to glob-

ally optimal solutions (smallest cut sets) while providing an

answer 5.6 times faster on average than the standard method

to find a smallest cut set.

Keywords: Safety Analysis, Minimal Cut Set, SMT-based

Model Checking, Max-SMT

1 Introduction
Safety analysis is a crucial and well established activity in

the design of critical systems that is often mandated by cer-

tification regulations. It aims at proving that a given system

operates within some level of safety in the presence of faults.

Traditionally, safety analysis has been performed manually

based on informal design models, making the analysis highly

subjective and dependent on the skill of the practitioner.

However, in recent years there has been a growing inter-

est in Model-based Safety Analysis (MBSA) [9]. This is an

approach in which the design and safety engineers share a

common systemmodel created using a Model-based develop-

ment (MBD) process. In MBD, the development is centered

around a formal specification, or model, of the system. This

model can then be subject to various kinds of rigorous anal-

ysis and synthesis such as completeness and consistency

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HILT’22, October 2022, Oakland, Michigan, USA
© 2022 Copyright held by the owner/author(s).

analysis, model checking, test case generation, etc. MBSA

uses the system model to assess the system’s resilience to

component failure, and construct safety analysis artifacts

such as minimal cut sets and fault trees.

In this context, a minimal cut set (MCS) is a minimal set

of faults, a.k.a basic events, that lead to the violation of a

safety requirement or some other failure, the so called top
level event (TLE). These sets of faults, or fault configurations,
can be arranged in a fault tree, a tree making use of logical

gates to depict the logical interrelationships linking such

events with the TLE. Finding cut sets is important to assess

the fault tolerance level of a system design, and investigate

how failures propagate through the system.

In this paper, we focus on the safety analysis of behav-

ioral models of infinite-state reactive systems. In this setting,

safety requirements are (LTL) regular safety properties of

the intended system model, which can always be recast as

invariant properties. A system model consists of a nominal
model, which specifies the behavior of the system in the ab-

sence of faults, and a set of faulty behaviors, which augment

the nominal behavior whenever their corresponding faults

are present. Thus, we consider the problem of (dis)proving

safety properties in the presence of faults, and computing

minimal cut sets, if any, for the violation of a safety property.

Typically, system models can be faithfully encoded as log-

ical formulas. For such systems the problem above can be

addressed with logic-based model checking techniques, such

as k-induction [14] and IC3 [5], that capitalize on the power

of solvers for satisfiability modulo theories (SMT). When

these model checking techniques disprove a safety property

under failure conditions, they also produce a counterexample

demonstrating how faults lead to a failure. These counterex-

amples can be used to reason about the evolution of faults

over time, and extract a fault configuration, although a non-

necessarily minimal one.

We work under the monotonicity assumption, commonly

adopted in safety analysis, that additional faults cannot pre-

vent the violation of an already violated safety property.

Under this assumption, a minimal cut set for a property is

preferable to a super-set of it, since the latter will still cause

the property to fail. Moreover, smaller MCSs are preferable

over larger ones, since, in practical cases, the smaller a MCS

the greater the probability that the safety property can be

violated. This leads to the standard practice, in particular for

complex systems, of computing only MCSs up to a maximum

cardinality. However, that may still be computationally ex-

pensive and therefore its application may be pushed only to

Ada Letters, December 2022 32 Volume XLII, Number 2

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591335.3591337&domain=pdf&date_stamp=2023-04-05

late phases of the development process. As a consequence, to

help safety engineers with early detection of design issues it

is fundamental to be able to resort to more efficient methods

for computing small cut sets.

The key observation of this work is that ensuring mini-

mality or minimal cardinality with respect to all fault config-
urations and counterexamples that lead to the violation of a

safety property is not always required for the early detection

of problems in a system design. By definition, a safety prop-

erty is one that fails to hold if and only if it is violated by a

finite counterexample, i.e., a finite execution of the system.

For this reason, it is often sufficient to compute a cut set

with minimal cardinality over all counterexamples of a given
length 𝑛. This often results in a small cut set that is close or

equal to a globally optimal solution (a smallest MCS) and, as

such, is enough to point to flaws in the system design.

To illustrate this point and the other concepts introduced

so far, we will use a simple example of an aircraft controller

derived from previous work [11]. The example is introduced

in Section 3, but first, in the next section, we give a brief

description of the notions and notations that will be used

throughout the paper. The rest of the paper is organized as

follows. Section 4 describes how to encode faulty behaviors

into a nominal system. Section 5 presents the base method

to compute a (not necessarily minimal) cut set using a faulty

model. Section 6 describes how to compute a cut set with

minimal cardinality. Section 7 presents the method we pro-

pose to obtain efficiently a small cut set based on a local

optimization of the cut set cardinality. Experimental results

comparing both approaches are reported in Section 8. Sec-

tion 9 presents related work, and Section 10 concludes with

a discussion of further research.

2 Preliminaries
2.1 SAT, Max-SAT, and Max-SMT
Let P be a finite set of propositional variables. If 𝑝 ∈ P then

𝑝 and ¬𝑝 are literals. A clause is a disjunction of literals. A

propositional formula (in conjunctive normal form) is a con-
junction of clauses. The problem of propositional satisfiability
(or SAT) consists in determining whether or not a given for-

mula is satisfiable, or has a model: an assignment of truth

values to its variables that makes it true.

A generalization of SAT is the satisfiability modulo theories
(SMT) problem [3], which consists in deciding the satisfiabil-

ity of a given (typically) quantifier-free first-order formula

with respect to a background theory T . In this setting, a

model (which we may also refer to as a solution) is an assign-

ment of values from the theory to the formula’s variables

that satisfies the formula and interprets function and pred-

icate symbols consistently with the axioms of T . Here we

will consider the theories of linear real/integer arithmetic
(LRA/LIA), where literals are linear inequalities over real and
integer variables, respectively.

Another generalization of SAT is theMax-SAT problem [3]

which considers formulas in conjunctive normal form where

each conjunct or clause is labeled as a hard or a soft con-
straints and each soft constraint is assigned a positive weight.

The problem consists in finding an assignment of truth val-

ues for the formula’s variable that satisfies all the hard con-

straints and maximizes the sum of the weights of the satis-

fied soft constraints, or dually, that minimizes the sum of the

weights of the soft constraints it falsifies.

Max-SMT [13] is the natural extension of the Max-SAT

problem to SMT where formulas can contain variables over

additional data types other than the Booleans, and so the

sought maximizing assignments are over such variables as

well.

In general, if 𝐹 is a formula and 𝒙 is a tuple of variables,

we write 𝐹 [𝒙] to indicate that the elements of 𝒙 are free

in 𝐹 . If then 𝒕 is a tuple of terms of the same type as 𝒙 , we
denote by 𝐹 [𝒕] the formula obtained from 𝐹 by simultane-

ously replacing every occurrence of a variable from 𝒙 by the

corresponding term in 𝒕 .

2.2 Transition Systems, Invariants, and LTL
specifications

We represent a systemmodel as a state transition systems 𝑆 =

⟨𝒔 , 𝐼 [𝒔],𝑇 [𝒔 , 𝒔′]⟩ where 𝒔 is a vector of typed state variables,

𝐼 is the initial state predicate over the variables 𝒔 , and 𝑇

is a two-state transition predicate over the variables 𝒔 and
𝒔′ where 𝒔′ is a renamed version of 𝒔 denoting the next

state. We will use ⟨𝐼 ,𝑇 ⟩ to refer to transition system 𝑆 when

the vector of state variables 𝒔 is clear from the context or

not important. We will assume without loss of generality

that 𝑇 has the structure of a top-level conjunction, that is,

𝑇 [𝒔 , 𝒔′] = 𝑇1 [𝒔 , 𝒔′]∧· · ·∧𝑇𝑛 [𝒔 , 𝒔′] for some𝑛 ≥ 1. Notice that

this is the norm in specification languages, like Lustre [8],

where the modeled system is expressed as the synchronous

product of several subcomponents, each of which is in turn

formalized as the conjunction of one ormore constraints. The

conjunctive formulation is also common in languages that

express the transition relation as a set of guarded transitions.

By a slight abuse of notation, we will then identify 𝑇 with

the set {𝑇1, . . . ,𝑇𝑛} of its top-level conjuncts.
A state property 𝑃 [𝒔] for a system 𝑆 = ⟨𝒔 , 𝐼 [𝒔],𝑇 [𝒔 , 𝒔′]⟩,

expressed as a predicate over the variables 𝒔 , is invariant for
𝑆 if it holds in every reachable state of 𝑆 .

We use standard notions and notation from Linear Tempo-

ral Logic (LTL) to formalize temporal properties of transition

systems.

2.3 Bounded Model Checking
Bounded Model Checking (BMC) [2] is a method involv-

ing checking potential executions of a system model in an

Ada Letters, December 2022 33 Volume XLII, Number 2

incremental fashion against the negation of a state prop-

erty by encoding them as propositional satisfiability formu-

las. Although BMC was originally developed for proposi-

tional encodings of finite-state systems, the technique has

been successfully extended and applied to SMT encodings

of (in)finite-state systems. Given a transition system 𝑆 =

⟨𝒔 , 𝐼 [𝒔],𝑇 [𝒔 , 𝒔′]⟩, a state property 𝑃 , and a bound 𝑘 , BMC

unrolls the system 𝑘 times to produce a SMT formula𝜑𝑘 such

that 𝜑𝑘 is satisfiable iff 𝑃 has a counterexample of length 𝑘

or less:

𝜑𝑘 = 𝐼 [𝒔0] ∧
𝑘∨
𝑖=0

𝑖−1∧
𝑗=0

(𝑇 [𝒔 𝑗 , 𝒔 𝑗+1] ∧ ¬𝑃 [𝒔𝑖])

where 𝒔0, . . . , 𝒔𝑘 are each a fresh renaming of 𝒔 . Formula 𝜑𝑘
is given to an SMT solver to be checked for satisfiability. If it

is satisfiable, then the SMT solver will provide an assignment

that satisfies 𝜑𝑘 . With this assignment, the counterexample

is constructed using the values extracted from variables 𝒔𝑖 .
If 𝜑𝑘 is unsatisfiable, that means no state is reachable in 𝑘

steps or less such that the state violates property 𝑃 .

We will use BMC_Encoding(𝐼 , 𝑇 , 𝑃 , 𝑘) to denote a call

to a function that returns the formula 𝜑𝑘 given as input a

transition system 𝑆 = ⟨𝐼 ,𝑇 ⟩, a state property 𝑃 , and a bound

𝑘 .

3 Motivating Example
Suppose we want to design a component for an airplane that

controls the pitch motion of the aircraft, and suppose one

of the system safety requirements is that the aircraft should

not ascend beyond a certain altitude. The controller must

read the current altitude of the aircraft from a sensor, and

modify the next position of the aircraft’s nose accordingly.

Moreover, we want the system to be fault-tolerant to sensor

failures. One way to improve system fault-tolerance is to

introduce some redundancy. In particular, we can equip the

system with three different altimeters so the controller re-

ceives three independent altitude values. Then the controller,

with the help of a dedicated component, a triplex voter, takes
the average of the two altitude values that are closest to

each other — as they are more likely to be close to the actual

altitude. Following a model-based design, we model an ab-

straction of the system’s environment to which the aircraft’s

controller will react. We also model the fact that the system

relies on a possibly imperfect reading of the current altitude

by an altimeter sensor to decide the next pitch value. Finally,

we provide a specification for the controller’s behavior so

that it satisfies the system requirement of interest.

A diagram of our model is shown in Figure 1. The main

component, represented by the outermost rectangle, is an ob-
server component that represents the full system consisting

in this case of just three subcomponents, for simplicity: one

component modeling the controller, one modeling a triplex

Controller

Triplex
Voter

Environment

alt
1

alt
2

alt
3

s_alt

pitch

alt

UB

ERR

TH

Figure 1. Diagram of the System Model

voter, and another one modeling the environment. The ob-

server has three inputs: alt1, alt2, and alt3, representing the
altitude values from each altimeter, and an output alt, repre-
senting the actual current altitude of the aircraft, which we

are modeling as a product of the environment in response

to the pitch value generated by the controller.

The system model makes a series of assumptions on the

altitude values provided by the sensors and on a number of

symbolic numeric constants (TH, UB and ERR) which act in

effect as model parameters. Constant TH represents a thresh-

old of the altitude value, constantUBmodels an upper bound

on the change in altitude from one execution step to the next,

and constant ERR is a bound on the sensor measurement er-

ror (more details below). The first assumption,𝐶1, establishes

that constants TH and UB are positive, and constant ERR is

non-negative. The three next assumptions, 𝑆1, 𝑆2, and 𝑆3 ac-

count for the fact that, while the altitude value produced by

each altimeter is not 100% accurate in actual settings, its error

is bounded by a constant (ERR). That is, the system assumes

the satisfaction of LTL formulas 𝑆𝑖 ≡ (alt −alt𝑖 ≤ ERR)
for 1 ≤ 𝑖 ≤ 3. Under those assumptions, the system must

satisfy the LTL property 𝑅1 ≡ (alt ≤ TH), that formalizes

the requirement that aircraft maintain its altitude below a

certain threshold TH at all times.

Let 𝑀 = min(|alt1 − alt2 |, |alt1 − alt3 |, |alt2 − alt3 |). As
explained above, triplex voter takes the sensor values and

computes an estimated altitude for the controller satisfying

the following specification:

s_alt =


(alt1 + alt2)/2, if𝑀 = |alt1 − alt2 |
(alt1 + alt3)/2, if𝑀 = |alt1 − alt3 |
(alt2 + alt3)/2, if𝑀 = |alt2 − alt3 |

Ada Letters, December 2022 34 Volume XLII, Number 2

We abstract the dynamics of the Controller and the En-
vironment by omitting details that are not relevant for the

satisfaction of the safety requirement 𝑅1. In the Controller’s
case, we model the guarantee that the controller will produce

a negative pitch value whenever the sensor altitude indicates

that the aircraft is getting too close to the threshold value TH,
by which we mean that the difference between the current

altitude and TH is smaller than UB + ERR:

𝐿1 ≡ (s_alt > LIMIT ⇒ pitch < 0)

with LIMIT = TH − (UB + ERR).
If alt represents the actual altitude of the aircraft, the

Environment satisfies the following specification:

• 𝐸1 ≡ alt = 0

• 𝐸2 ≡ (alt ≥ 0)
• 𝐸3 ≡ (pitch < 0 ⇒ alt ≤ alt)
• 𝐸4 ≡ (pitch < 0 ⇒ alt ≥ alt − UB)
• 𝐸5 ≡ (pitch > 0 ⇒ alt ≥ alt)
• 𝐸6 ≡ (pitch > 0 ⇒ alt ≤ alt + UB)
• 𝐸7 ≡ (pitch = 0 ⇒ alt = alt)

The specification captures salient constraints on the physics

of our model by specifying that a positive pitch value (which

has the effect of raising the nose of the aircraft and lowering

its tail) makes the aircraft ascend, a negative value makes

it descend, and a zero value keeps it at the same altitude.

The specification also states that the actual altitude starts at

zero, is always non-negative, and does not change by more

than a constant value (UB) in one sampling frame, where

a sampling frame is identified with one execution step of

the synchronous model (one global clock tick) for simplicity.

The latter constraint on the altitude change rate captures

physical limitations on the speed of the aircraft.

A model checker can easily prove that safety requirement

𝑅1 is satisfied by the system model. This provides evidence

that the system satisfies the safety requirement in the ab-

sence of faults. However, this result is not enough to deter-

mine whether the introduced redundancy mechanism makes

the systemmore fault tolerant. To check this, we can consider

different faulty behaviors, that is, different ways of injecting

faults into the sensors. For this example, we will consider

a very general faulty model where any of the sensors can

fail and provide a value that does not satisfy assumptions

𝑆𝑖 at some step. This way, if one of the altimeters fails, in

the sense that it produces an altitude reading with an error

greater than the maximum expected error, the other two

values should allow the system to compensate for that error.

To confirm this, we can compute a smallest cut set and verify

the cardinality of the cut set is two, i.e., at least two of the

assumptions 𝑆𝑖 must fail to hold to trigger the TLE. Perhaps

surprisingly though, if we compute a smallest cut set using

an algorithm like the one we will present in next section, we

see that there exists a smallest cut set of cardinality one that

consists of only one of the assumptions 𝑆𝑖 . That is, a single

sensor failure is enough to lead the system to the violation of

safety requirement 𝑅1. Put differently, property 𝑅1 requires

all three sensors to behave according to their specification

despite the use of a triplex voter.

As we will see in next section, computing a smallest cut

set usually requires finding a series of smaller cut sets and

counterexamples associated with it and eventually proving

there is no counterexample of any length with a smaller cut

set than the last cut set found so far. However, to spot a

flaw like the one described above sometimes it is enough

to find a counterexample and a cut set without imposing

restrictions on the cardinality of the cut set, and then look

for a counterexample of the same length that minimizes the

number of cut set elements. Unlike first approach, which

performs global optimization, the second approach consid-

erably narrows down the search space by considering only

counterexamples of a fixed length, determined by the first

counterexample found. When applied to our example, this

local optimization approach can find the same cut set of car-
dinality one as the first approach but it can compute it much

more efficiently, as we will see in next section.

After reviewing the model in light of the existence of

a cut set of size one, however computed, a designer may

conclude that to benefit from the triplex voter it is necessary

to decrease the safety limit value LIMIT in the controller’s

contract. In particular, it is enough to decrease it by doubling

the error bound value: LIMIT = TH − (UB + 2 ∗ ERR). After
this change, both approaches to compute cut sets return one

of cardinality two, consisting of two of the assumptions 𝑆𝑖 .

In this case though, only the global optimization approach

provides the guarantee that no smaller cut set exists.

As shown for our example, however, the local approach

we propose, because of its lower computational cost, en-

ables users to check for and discover design issues early in

the modeling process. This difference in performance can

be increasingly significant as the scale of analyzed systems

grows. We present later initial experimental evidence sug-

gesting that the advantages of our approach extend beyond

the example given here.

4 Encoding Faulty Behavior
Faulty behavior in a system is specified as an extension

of its nominal model. Starting from a nominal model 𝑆 =

⟨𝒔 , 𝐼 [𝒔],𝑇 [𝒔 , 𝒔′]⟩ with 𝑇 = {𝑇1, . . . ,𝑇𝑛}, the system designer

identifies𝑚 disjoint non-empty subsets 𝑭 1, . . . , 𝑭𝑚 of 𝑇 cor-

responding to𝑚 possible faults the system can suffer from

so that every model component 𝑇𝑗 in 𝑭 𝑖 is affected when

fault 𝑖 occurs. To simplify the exposition, we assume here

that each fault affects different parts of the system. Also for

simplicity, we assume that faults do not effect the behavior

of the system in its initial state(s).
1

1
An extension to the case in which a component’s behavior may be affected

initially and possibly by more than one fault can be done with a slightly

more complex formalization.

Ada Letters, December 2022 35 Volume XLII, Number 2

Now, for all faults 𝑖 = 1, . . . ,𝑚, the designer provides an

alternative, faulty behavior specification 𝑇𝑗 of every model

component 𝑇𝑗 in 𝑭 𝑖 . This faulty behavior is enabled by a

Boolean flag 𝑓𝑖 that represents the occurrence of fault 𝑖 . Let

𝑇 ⋄
collect the components of 𝑇 affected by none of the mod-

eled faults, that is,𝑇 ⋄ = 𝑇 \ (𝑭 1 ∪ · · · ∪ 𝑭𝑚). Then, the faulty
model is given by transition system 𝑆★ = ⟨𝒛, 𝐼 [𝒛],𝑇★[𝒛, 𝒛′]⟩,
where the vector of typed variables 𝒛 extends 𝒔 with the fresh
Boolean constants 𝑓1, . . . , 𝑓𝑚 and the transition predicate is

defined by

𝑇★[𝒛, 𝒛′] = 𝑇 ⋄ ∪ {𝑇𝑗 ∨ (𝑓𝑖 ∧𝑇𝑗) | 1 ≤ 𝑖 ≤ 𝑚, 𝑇𝑗 ∈ 𝑭 𝑖 }

For convenience and generality, the system 𝑆★ is defined

so that the presence of a fault 𝑖 in a system execution (corre-

sponding to the flag 𝑓𝑖 having value true) may or may not

trigger the faulty behavior in the affected components at

any particular step of the execution. Note that, in effect, we

can obtain the nominal model 𝑆 from 𝑆★ by conjoining the

constraints ¬𝑓1, . . . , ¬𝑓𝑚 to the initial state predicate.

5 Computing a cut set and a
counterexample

Consider again a transition system 𝑆 = ⟨𝒔 , 𝐼 [𝒔],𝑇 [𝒔 , 𝒔′]⟩
with faulty behavior specifications 𝑭 1, . . . , 𝑭𝑚 ⊆ 𝑇 enabled

by faults 𝒇 = ⟨𝑓1, . . . , 𝑓𝑚⟩, respectively. Given a state prop-

erty 𝑃 expected to be invariant for 𝑆 , we can look for a cut

set and a counterexample that leads the system to the vio-

lation of 𝑃 by checking whether 𝑃 is also invariant for the

extended system 𝑆★ defined as in the previous section. If

we can disprove 𝑃 , the constant values assigned to 𝒇 in any

trace that leads 𝑆★ to the violation of 𝑃 determines a cut set,

namely, the set of all 𝑓𝑖 ’s that are true. Such cut set describes

a fault configuration that jeopardizes the invariance of 𝑃 . On

the other hand, if we prove 𝑃 invariant, we can conclude

that the system is robust to all faults as far as 𝑃 is concerned.

In this work, we assume we have access to a black-box

procedure Verify to perform these invariance checks. From

a theoretical standpoint, Verify is an oracle since the invari-

ance problem is undecidable in the infinite-state case. In prac-

tice, however, SMT-based model checking techniques, such

as k-induction and IC3, yields incomplete versions of Verify
that often provide a sound answer in reasonable time. In our

concrete implementation, we make the verification check

terminating by imposing a time limit and extending the type

of the returned result with an additional value (unknown) to
account for the timeout being reached.

6 Computing a globally smallest cut set
Building on top of the basic ideas described in the previous

section, we can compute a smallest cut set and an associated

counterexample, or determine that no such cut set exists,

using Algorithm 1. The procedure can return Unknown due

Algorithm 1 ComputeGlobalCutSet(⟨𝒔 , 𝐼 ,𝑇 ⟩, ⟨𝑓𝑖 , 𝑭 𝑖 ⟩1≤𝑖≤𝑚 , 𝑃)

1: 𝑇 ⋄
:= 𝑇 \ (𝑭 1 ∪ · · · ∪ 𝑭𝑚)

2: 𝑇 ◦
:= {𝑇𝑗 ∨ (𝑓𝑖 ∧𝑇𝑗) | 1 ≤ 𝑖 ≤ 𝑚, 𝑇𝑗 ∈ 𝑭 𝑖 }

3: 𝑇★
:= 𝑇 ◦ ∪𝑇 ⋄

4: 𝑡 :=𝑚; res := unknown; 𝜃 := ∅; 𝒇 := ⟨𝑓1, . . . , 𝑓𝑚⟩
5: do
6: 𝐼★ := 𝐼 ∧ AtMostK(𝒇 , 𝑡)
7: res, 𝜃 ′ := Verify(𝒔 , 𝐼★, 𝑇★

, 𝑃)

8: if res = unsafe then
9: 𝑡 := 𝑡 − 1; 𝜃 := 𝜃 ′ ⊲ Store last counterexample

10: end if
11: while 𝑡 ≥ 0 ∧ res = unsafe
12: if 𝑡 < 𝑚 then ⊲ Unsafe with 𝑡 + 1 faults

13: if 𝑡 < 0 then
14: return ⟨∅, 𝜃, true⟩ ⊲ Nominal system itself

unsafe

15: else
16: 𝐶 := ExtractCutSet(𝜃 , 𝒇)
17: is_a_smallest_sol := (res = safe)
18: return ⟨𝐶, 𝜃, is_a_smallest_sol⟩
19: end if
20: else
21: if res = unknown then
22: return Unknown
23: else
24: return NoSolution
25: end if
26: end if

to the undecidability of the underlying model checking prob-

lem. It can also return a cut set that does not necessarily

have minimal cardinality, which is indicated by a flag.

The key idea of the algorithm is to add to the initial state

predicate 𝐼 a cardinality constraint AtMostK(𝒇 , 𝑘) over the
fault flags 𝒇 that restricts possible solutions to fault config-

urations with at most 𝑘 (present) faults. Lines 5-11 use this

reduction to find an MCS of minimal cardinality. If none ex-

ists, or the first call to Verify returned unknown, the condition
in line 12 is false, and the algorithm returns the correspond-

ing result in each case in lines 21-25. Specifically, if the first

call to Verify reaches the time limit without determining

the invariance of property 𝑃 under the faulty conditions,

the algorithm returns Unknown at line 22. If the first call

to Verify returns safe, i.e., proves that 𝑃 is invariant under

faulty conditions, the algorithm returns there is no cut set

solution (at line 24).

If the nominal system 𝑆 itself does not satisfy 𝑃 , condi-

tion in line 14 is true, and the unique MCS is the empty set.

Otherwise, a cut set is extracted at line 16 from 𝜃 , which

is the last error trace found in the do-while loop. This is

done simply by collecting all the flags 𝑓𝑖 that are assigned

value true by the error trace. Before returning the cut set

and the counterexample in line 18, the procedure determines

Ada Letters, December 2022 36 Volume XLII, Number 2

Algorithm 2 ComputeLocalCutSet(⟨𝒔 , 𝐼 ,𝑇 ⟩, ⟨𝑓𝑖 , 𝑭 𝑖 ⟩1≤𝑖≤𝑚 , 𝑃)

1: Let 𝑇★
be as in Algorithm 1

2: res, 𝜃 := Verify(𝒔 , 𝐼 , 𝑇★
, 𝑃)

3: if res = unknown then
4: return Unknown
5: else
6: if res = safe then
7: return NoSolution
8: else
9: 𝑘 := length(𝜃);

10: 𝜑𝑘 := BMC_Encoding(𝐼 , 𝑇★
, 𝑃 , 𝑘)

11: SmtAssertHard(𝜑𝑘)
12: for 𝑖 := 1 to𝑚 do
13: SmtAssertSoft(¬𝑓𝑖 , 1)
14: end for
15: SmtCheckSat()
16: 𝜃 ′ := GetCounterexample()
17: 𝐶 := ExtractCutSet(𝜃 ′, 𝒇)
18: return ⟨𝐶, 𝜃 ′⟩
19: end if
20: end if

whether the cut set has minimal cardinality by checking if

the last call to Verify returned safe (line 17).

7 Computing a locally smallest cut set
Algorithm 1 from Section 6 ensures that the cut set returned

at line 18 has minimal cardinality provided that none of

the calls to Verify return unknown. But it does that at the
cost of having to solve multiple model checking problems,

and having to prove the input property invariant for the

provided system in the last call to Verify, which is often a

harder problem to solve than disproving the satisfaction of a

property.

In this section we describe an alternative method which

does not ensure global optimality but can nonetheless find

a small cut set with cardinality close or equal to a globally

optimal solution while needing to call Verify only once.

In addition to Verify, the procedure implementing this

method and described in Algorithm 2, relies on an external,

off-the-self Max-SMT solver. It starts by checking whether

cut sets exist at all by solving the model checking problem de-

scribed in Section 5. If the call to Verify reaches the time limit

without determining the invariance of property 𝑃 under the

faulty conditions, the algorithm returnsUnknown at line 4. If
the call to Verify returns safe, i.e., proves that 𝑃 is invariant

under faulty conditions, the algorithm returns there is no

cut set solution (at line 7). Otherwise, we know there exists

a cut set. With 𝑘 being the length of the counterexample 𝜃

returned by Verify, the procedure builds a Max-SMT problem

Figure 2. Comparison between local and global optimization

to find the smallest cut set among all cut sets with an associ-

ated counterexample of length exactly 𝑘 (at lines 9-18).
2

The main idea is to first create a standard Bounded Model

Checking encoding (as described in Section 2.3) with the

faulty model and invariance property 𝑃 for a bound 𝑘 equal

to the length of 𝜃 . The resulting formula is asserted as a hard

constraint to the Max-SMT solver (at line 11). The optimiza-

tion problem for the Max-SMT solver consists in minimizing

the number of active faults needed to violate property 𝑃 .

This is done by asserting to the solver one soft constraint

per fault flag 𝑓𝑖 , all with weight 1, stating that the flag is false

(¬𝑓𝑖 at lines 12-14). Note that Max-SMT problem so obtained,

checked at line 15, is guaranteed to have a solution since the

counterexample to 𝑃 invariance found by the call to Verify
is a solution to this problem as well. By the optimality of

the solution 𝜃 ′ returned by the Max-SMT solver (at 16), the

cut set 𝐶 computed at line 17 is guaranteed to have smallest

cardinality among all cut sets associated to counterexam-

ples of length 𝑘 , the length of the original counterexample.

The procedure returns both the cut set and its associated

counterexample, similarly to the global optimization one but

without any claims about the cut set’s global optimality.

8 Experimental Evaluation
The main premise of this work is that the approach for

computing small cut sets based on local optimization, as

described in Section 7, is more efficient in practice than the

computation providing global guarantees as described in

Section 6. Moreover, the solutions computed by the local

optimization approach have a cardinality equal or close to

the optimal one.

To test our hypothesis, we implemented both approaches

in our model checker Kind 2 [11], and compared their per-

formance on a fairly large set of benchmarks. Because of the

2
Alternatively, we could consider cut sets with associated counterexample

of length at most 𝑘 , like in the standard formulation of BMC. However,

typical implementations of Verify based on k-induction and IC3 usually

provide counterexamples whose length is already minimal or close to it

most of the time.

Ada Letters, December 2022 37 Volume XLII, Number 2

practical difficulty of finding publicly available models read-

able by Kind 2 and specifically designed with fault tolerance

in mind, we retooled a previous set of safety benchmarks

to the purposes of our evaluation. Each benchmark in the

starting set, largely based on one introduced by Kahsai and

Tinelli [10]
3
consists of a multi-component model with a

single invariance property. We selected benchmarks from

the starting set by running Kind 2 on a cluster with ten

Intel(R) Xeon(R) E3-1240, 3.4GHz, 4 cores, 16 GB memory

machines. We kept the benchmarks for which Kind 2 was

able to prove the property valid with a 5 minute timeout,

which yielded 486 instances. Then, we considered the prob-

lem of proving each property under the possibility of each

model component failing to provide outputs consistent with

its low-level specification. More specifically, we modeled the

faulty behavior simply by allowing the failing component

to return any value at all among those allowed by its output

type.
4

We ran Kind 2 on the selected problems using each ap-

proach with 15 minute timeout. Figure 2 shows that the local

optimization approach significantly out-performs the global

optimization one, providing an answer 5.6 times faster on

average. Analyzing the individual responses to each prob-

lem, we found that both approaches were able to detect the

absence of cut sets for 5 of the problems, and the local ap-

proach was able to find a cut set with optimal cardinality

in 434 out of the 436 cases where both approaches found a

cut set. In the two cases where the local approach returned

a suboptimal solution, it was off just by one with respect to

the size of the optimal solution.

These results should be taken with a grain a salt due to

the synthetic nature of the benchmarks, a majority of which

had highly fault-intolerant systems. In the majority of cases,

the globally optimal cut sets had cardinality one and in the

rest it had cardinality two. More seriously perhaps, in most

of the benchmarks almost any one of the considered faults

would lead, by itself, to the violation of the property, making

it easy for our local optimization method to stumble into a

globally optimal solution. Although more experiments are

needed, we find that our evaluation provides nevertheless

encouraging preliminary evidence of the usefulness of the

local optimization method.

9 Related Work
The use of Bounded Model Checking to find a cut set and an

associated counterexample was first proposed by Abdulla et

al. [1]. The focus of that work, however, is not on comput-

ing a single cut set but all MCSs. To prevent the generation

of non-minimal solutions, the paper proposes the computa-

tion of cuts sets of increasing cardinality. This approach has

also the advantage of generating smaller MCSs before larger

3
Available at https://github.com/kind2-mc/kind2-benchmarks.

4
That is, we did not consider the possibility of an ill-typed result.

MCSs. Thus, one can generate a single smallest MCS just

stopping after the first optimal solution is generated. The

search for a single smallest MCS is very similar to the one

performed by the method presented in Section 6, the main

difference being the direction of the search. The technique

of Abdulla et al. progressively tries all numbers of faults

from 0 to𝑚 (forward enumeration), whereas our algorithm

tries values from 𝑚 to 0 (backward enumeration). The ra-

tionale of our strategy is to minimize the number of solved

problems for which the property is valid, which is often

a harder problem to solve than disproving the satisfaction

of a property, especially when the length of the generated

counterexamples is not very long. As we describe in other

work [11, 12], Kind 2 implements the approach above using

backward enumeration to compute all MCSs, (and a single

globally smallest MCS). Unlike the encoding of faulty models

presented in this paper, the actual implementation in Kind 2

only supports faulty behavioral specifications equivalent to

true. More specifically, Kind 2 allows the user to choose a

set of model elements (assumptions and guarantees, node

calls, equations in node bodies, . . .) of its input language, an

extension of the dataflow Lustre language [8], and Kind 2

will compute minimal sets of those elements whose viola-

tion leads the system to an unsafe state. However, this is not

really a limitation since the more general case presented in

this work can reduced to the more specific case supported

by Kind 2: once a faulty model is built following the en-

coding described in Section 4, the user just have to specify

assumptions stating that 𝑓𝑖 should be false, and choose those

assumptions as the model elements.

Another algorithm for computing all MCSs is described

by Bozzano et al. [4]. It too forces the algorithm to proceed

by layers of increasing cardinality. Thus, it may also be used

to compute a globally smallest cut set. The method relies on

a IC3-based routine for parameter synthesis to compute all

the solutions in each layer. Therefore, instead of relying on a

black-box Verify procedure to solve multiple ordinary model

checking queries, they use a specialized algorithm. The main

advantage in that case is that the information learnt to block

a particular counterexample can be reused when considering

new ones.

A different approach to computing all MCSs is the method

presented by Stewart et al. [15]. It exploits the duality be-

tween the set ofMinimal Inductive Validity Cores (MIVCs) [6],
minimal sets of model elements that are sufficient to prove

a property, and the set of Minimal Cut Sets for the same

property and computes the latter from the former. This is

convenient when the goal is to compute all MCSs since one

can use an offline algorithm for enumerating all MIVCs [7],

which may offer better overall performance than computing

one MIVC at a time. The downside of this solution is that,

unlike the techniques described earlier, it cannot be used to

compute a single MCS for a property without paying the

cost of computing all of them.

Ada Letters, December 2022 38 Volume XLII, Number 2

https://github.com/kind2-mc/kind2-benchmarks

10 Conclusion
We presented a method that leverages behavioral modeling

and Max-SMT solvers to obtain efficiently a small set of

faults that lead to the violation of safety requirements. The

method computes a cut set with minimal cardinality over all

counterexamples of a given length by reducing the problem

to an optimization problem over an SMT formula. Initial

experimental results are very encouraging in terms of the

effectiveness of the method in generating cut sets that are

close or equal to globally optimal solutions, and the speed up

achieved compared to the standard method for computing a

(globally) smallest cut set.

As future work, we want to investigate further the effec-

tiveness of the proposed technique by applying the method

to a broader set of benchmarks, and evaluating its perfor-

mance in determining not only the tolerance of a system

against faults, but also its resilience to cyber-attacks. We also

want to explore the possibilities of setting different weights

for the soft constraints in the Max-SMT problem, which

leads to a natural way of establishing preference between

difference solutions beyond the cardinality of the cut sets.

Specifically, in Algorithm 2, the soft constraints stating that

a particular fault should not occur all have weight 1. One

can imagine assigning a higher weight to a subset of the

soft constraints to give preference to solutions that do not

include faults in the subset.

Acknowledgments
This work was partially funded by DARPA grant #N66001-

18-C-4006 and by GE Global Research.

References
[1] Parosh Aziz Abdulla, Johann Deneux, Gunnar Stålmarck, Herman

Ågren, and Ove Åkerlund. 2004. Designing Safe, Reliable Systems

Using Scade. In Leveraging Applications of Formal Methods, First Inter-
national Symposium, ISoLA 2004, Paphos, Cyprus, October 30 - Novem-
ber 2, 2004, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 4313), Tiziana Margaria and Bernhard Steffen (Eds.). Springer,

115–129. https://doi.org/10.1007/11925040_8
[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. 1999. Symbolic Model Checking without BDDs. In Tools and
Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam, The
Netherlands, March 22-28, 1999, Proceedings (Lecture Notes in Computer
Science, Vol. 1579), Rance Cleaveland (Ed.). Springer, 193–207. https:
//doi.org/10.1007/3-540-49059-0_14

[3] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.).

2021. Handbook of Satisfiability - Second Edition. Frontiers in Artificial

Intelligence and Applications, Vol. 336. IOS Press. https://doi.org/10.
3233/FAIA336

[4] Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Cristian

Mattarei. 2015. Efficient Anytime Techniques for Model-Based Safety

Analysis. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening and
Corina S. Pasareanu (Eds.). Springer, 603–621. https://doi.org/10.1007/

978-3-319-21690-4_41
[5] Aaron R. Bradley. 2011. SAT-Based Model Checking without Un-

rolling. In Verification, Model Checking, and Abstract Interpretation
- 12th International Conference, VMCAI 2011, Austin, TX, USA, Jan-
uary 23-25, 2011. Proceedings (Lecture Notes in Computer Science,
Vol. 6538), Ranjit Jhala and David A. Schmidt (Eds.). Springer, 70–87.

https://doi.org/10.1007/978-3-642-18275-4_7
[6] Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. 2016.

Efficient generation of inductive validity cores for safety properties.

In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and

Zhendong Su (Eds.). ACM, 314–325. https://doi.org/10.1145/2950290.
2950346

[7] Elaheh Ghassabani, Michael W. Whalen, and Andrew Gacek. 2017.

Efficient generation of all minimal inductive validity cores. In 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Aus-
tria, October 2-6, 2017, Daryl Stewart and Georg Weissenbacher (Eds.).

IEEE, 31–38. https://doi.org/10.23919/FMCAD.2017.8102238
[8] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. 1992.

Programming and Verifying Real-Time Systems by Means of the Syn-

chronous Data-Flow Language LUSTRE. IEEE Trans. Software Eng. 18,
9 (1992), 785–793. https://doi.org/10.1109/32.159839

[9] A. Joshi, S.P. Miller, M.Whalen, andM.P.E. Heimdahl. 2005. A proposal

for model-based safety analysis. In 24th Digital Avionics Systems Confer-
ence, Vol. 2. 13 pp. Vol. 2–. https://doi.org/10.1109/DASC.2005.1563469

[10] Temesghen Kahsai and Cesare Tinelli. 2011. PKind: A parallel k-

induction based model checker. In Proceedings 10th Int’l Workshop on
Parallel and Distributed Methods in verifiCation, PDMC 2011 (EPTCS,
Vol. 72). 55–62. https://doi.org/10.4204/EPTCS.72.6

[11] Daniel Larraz, Mickaël Laurent, and Cesare Tinelli. 2021. Merit and

Blame Assignment with Kind 2. In Formal Methods for Industrial Criti-
cal Systems - 26th International Conference, FMICS 2021, Paris, France,
August 24-26, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12863), Alberto Lluch-Lafuente and Anastasia Mavridou (Eds.).

Springer, 212–220. https://doi.org/10.1007/978-3-030-85248-1_14
[12] Daniel Larraz, Mickaël Laurent, and Cesare Tinelli. 2021. Merit

and Blame Assignment with Kind 2. CoRR abs/2105.06575 (2021).

arXiv:2105.06575 https://arxiv.org/abs/2105.06575
[13] Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT Modulo The-

ories and Optimization Problems. In Theory and Applications of Satis-
fiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings (Lecture Notes in Computer Science,
Vol. 4121), Armin Biere and Carla P. Gomes (Eds.). Springer, 156–169.

https://doi.org/10.1007/11814948_18
[14] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking

Safety Properties Using Induction and a SAT-Solver. In Formal Methods
in Computer-Aided Design, Third International Conference, FMCAD 2000,
Austin, Texas, USA, November 1-3, 2000, Proceedings (Lecture Notes in
Computer Science, Vol. 1954), Warren A. Hunt Jr. and Steven D. Johnson

(Eds.). Springer, 108–125. https://doi.org/10.1007/3-540-40922-X_8
[15] Danielle Stewart, Michael W. Whalen, Mats Per Erik Heimdahl, Jing

Liu, and Darren D. Cofer. 2021. Composition of Fault Forests. In

Computer Safety, Reliability, and Security - 40th International Conference,
SAFECOMP 2021, York, UK, September 8-10, 2021, Proceedings (Lecture
Notes in Computer Science, Vol. 12852), Ibrahim Habli, Mark Sujan, and

Friedemann Bitsch (Eds.). Springer, 258–275. https://doi.org/10.1007/
978-3-030-83903-1_17

Ada Letters, December 2022 39 Volume XLII, Number 2

https://doi.org/10.1007/11925040_8
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-319-21690-4_41
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/2950290.2950346
https://doi.org/10.1145/2950290.2950346
https://doi.org/10.23919/FMCAD.2017.8102238
https://doi.org/10.1109/32.159839
https://doi.org/10.1109/DASC.2005.1563469
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1007/978-3-030-85248-1_14
https://arxiv.org/abs/2105.06575
https://arxiv.org/abs/2105.06575
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-030-83903-1_17
https://doi.org/10.1007/978-3-030-83903-1_17

