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1 Basic Concepts

1.1 Lustre Nodes

Lustre is a synchronous data-flow language for modeling and implementing reactive systems. It can
be seen indifferently as a declarative parallel programming language or as an executable specification
language. The most basic unit of computation in a Lustre program, or model, is a node, which is just
a stream transformer: it takes streams of input and produces streams of output. Operationally, a node
reads its input and generates its output incrementally in discrete timesteps, or cycles, determined by
an abstract global clock. At each cycle, all output values are assumed to be computed instantaneously
from the current input and state values. By default, all nodes in a model compute synchronously and
in parallel according to the global clock.

A stream is an infinite sequence of values, all of the same (given) type. Hence, a Lustre node can
be viewed as modeling an infinite sequence of discrete timesteps, where at each timestep, each node
variable takes its next value.

Below, the node Combine takes as input two integer streams x and y, and produces integer stream
z as output. If we consider x = (x0, x1, . . .) and y = (y0, y1, . . .), then Combine produces output
z = (x0 + 2 · y0, x1 + 2 · y1, . . .) (or more concisely, zn = xn + 2 · yn at each timestep n).1 Notice
that line 3 is an equation between streams of integers. The operators =, + and * are stream operators
obtained by lifting to streams the corresponding operators over integers. The same is true of concrete
constants in Lustre, such as 2 in line 3 below, which are streams with the same value at each time step.
Lustre respects typical rules of operator precedence, so x + 2*y will be parsed as x + (2*y) rather
than (x + 2)*y.

Listing 1: Simple Lustre node

1 node Combine(x: int; y: int) returns (z: int);

2 let

3 z = x + 2*y;

4 tel

Line 1 of Combine is referred to as the node interface, where the node’s inputs and outputs, and their
types, are declared.

The code block surrounded by let and tel denotes the node implementation (also called the node
body), where the node’s outputs are defined in terms of the node’s inputs. A node implementation is
comprised of a set of equations of the form <var> = <expr>, where <var> is an output variable or a
local variable (see below) and <expr> is an expression in terms of any of the variables that are in scope.

Nodes can have more than one output stream as exemplified by the node TwoOuts below.

Listing 2: Node with two outputs

1 node TwoOuts(x: int) returns (double: int; square: int);

2 let

3 double = x + x;

4 square = x * x;

5 tel

1Note that it is not possible to specify a stream pointwise in Lustre, so when we write x = (1, 2, 3, . . .), say, we are
writing a mathematical statement about stream x, not an equation in Lustre.
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Another optional component that can be added to a Lustre node are local declarations. The local
variables and constants declared in this section can be used in the node implementation, but they are
not exposed in the node interface.

Finally, global constants can be declared outside of the node body, and are visible within every node.

Below is another version of Combine, where the value 2 is stored in a global constant C and the local
variable l is used to store an intermediate computation.

Listing 3: Node with global constant and local variable

1 const C: int = 2;

2 node Combine(x: int; y: int) returns (z: int);

3 var l: int;

4 let

5 l = C*y;

6 z = x + l;

7 tel

The order of the equations in the body of a node is immaterial. However, the definition of a variable
provided by the equations cannot be circular, as we explain in Section 5.

In Lustre, identifiers (for constants, variables, types, and keywords) are delimited by whitespace char-
acters, separators such parentheses and semicolon, and other symbols such as +, * and so on, as in
most programming languages. Whitespace is, however, not semantically meaningful. For instance,
indentation does not change the parsing of an expression.

1.2 Node analyses

Lustre was designed to be a programming language. Well-formed Lustre nodes are executable in the
sense that they can be compiled to executable programs computing their output values incrementally
from their input values and internal state.

Here, we are mostly interested in analyzing Lustre programs and their possible behavior with a tool like
Kind 2.

A basic form of analysis that can be applied to a Lustre program is node simulation. During simulation,
the user specifies a number n of timesteps to simulate, as well as the first n values of each input variable.
Given this information, the first n values of each output variable are computed. For the Combine node
above, if the user performed simulation with n = 3 and with given input stream prefixes x = (1, 2, 3)
and y = (4, 5, 6), the output value z = (9, 12, 15) would be computed.

Another form of analysis is property checking, where the user specifies a property in the node body (in
the form of a Boolean expression) to be proven or disproven invariant, that is, true at every time step.
For example, the conditional property y > 0 => l > y in the node below would be proven invariant.
In contrast, the property z > 0 would be disproven in the Combine node, as z is negative in timesteps
where both x and y are negative.

Listing 4: Node with internal property checking

1 const C: int = 2;

2 (* Example with

3 two properties

4 *)

5 node Combine(x: int; y: int) returns (z: int);
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6 var l: int;

7 let

8 l = C*y;

9 z = x + l;

10
11 check y > 0 => l > y; -- invariant

12 check z > 0; -- not invariant

13 tel

Property checking is performed by model checkers such as Kind 2, so further details are outside the
scope of this document.

2 Comments

Listing 4 shows two ways to add comments in Lustre programs. Single line comments are introduced
by the character sequence --. Multiline comments are delimited by the sequences (* and *). Nested
multiline comments are not allowed.

3 Primitive Types

Lustre’s primitive types are bool, int, and real. Informally, we say that bool is the type of Boolean
values (true, false). Strictly speaking, bool is the type of streams of Boolean values. We identify
the two for brevity since there is no possibility of confusions as all values in Lustre are streams.2 The
same is true for the other types.

In the idealized semantics of Lustre, int is the type of mathematical (infinite precision) integers, and
real is the type of real numbers. Lustre compilers approximate that semantics by using machine integers
for int and floating point numbers for real. In contrast, Kind 2 is faithful to the idealized semantics.

Lustre supports the Boolean operators not, and, or, xor, and => (implies), as well as the arithmetic
operators +, - (both unary and binary), *, /, mod, and div (integer division), all with the expected arity
and (pointwise) semantics. The arithmetic operators (+ and so on) are overloaded as they apply both
to int and real terms. The binary operators, however, are applicable only to arguments of the same
type (both int or both real). Numerals (0, 1, . . . ) have type int while decimals (e.g., 0.0, 31.97)
have type real.

Additionally, Lustre supports if-then-else expressions with the syntax

if <expr 0> then <expr 1> else <expr 2>

where <expr 0> has type bool and <expr 1> and <expr 2> must have the same type.

4 Temporal Operators

Lustre contains two temporal operators: the binary operator -> (pronounced “arrow” and not to be
confused with =>) and the unary operator pre.

2It is not possible to refer directly to the scalar values in a stream in Lustre. Even constants, such as true, 2, 3.6
denote streams of values, not individual values.
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0 1 2 . . . n

1 1 1 1 . . . 1

x x0 x1 x2 . . . xn
pre x ? x0 x1 . . . xn−1

1 + pre x 1 + ? 1 + x0 1 + x1 . . . 1 + xn−1

1 -> (1 + pre x) 1 1 + x0 1 + x1 . . . 1 + xn−1

Table 1: Stream computations for expression 1 -> (1 + pre x) at times 0, . . . , n.

The arrow operator is an initialization operator, where the expression a -> b denotes the stream whose
first value is equal to the first value of stream a, and whose nth value is equal to the nth value
of stream b for every n > 0. For example, if a = (−1,−1,−1, . . .) and b = (1, 2, 3, . . .), then
a -> b = (−1, 2, 3, . . .).

The pre operator can be viewed as referencing the previous value at every timestep—the expression
pre a denotes the stream whose value at step n is equal to the value of stream a at step n − 1. For
example, if b = (1, 2, 3, . . .), then pre b = (?, 1, 2, . . .). Notice that with these semantics, pre b is
undefined in the initial timestep (denoted by the question mark here).

Kind 2, treats undefined expressions as underspecified. That is, when simulating the stream pre b, it
could take values (-23, 1, 2, . . .), (79, 1, 2, . . .), etc. In other words, Kind 2 assigns the first
element of pre b an arbitrary integer. Consistently with that, a property of a node containing pre’s is
considered invariant only if it holds at every step, regardless of the value assigned to the first element
of any stream resulting from a pre application.

Because pre creates underspecified streams, we can combine it with -> to obtain fully specified streams.
For example, if b = (1, 2, 3, . . .), then 0 -> pre b = (0, 1, 2, 3, . . .), where the arrow operator supplies
the initial value 0 for the resulting stream. If an application of pre occurs without a corresponding
application of ->, the pre is unguarded. While unguarded pres are allowed in Lustre, Kind 2 will
produce warnings for nodes that contain them as this is usually an oversight by the user and may lead
to unexpected results.

The pre operator has the same precedence as other unary operators such as not. For example, pre
x + y is read as (pre x) + y, not as pre (x + y). Note that pre distributes over all non-temporal
operators. For instance, the expression pre (x + y) is equivalent to pre x + pre y.

To further reinforce how operators work over streams, the computation of the expression 1 -> (1 +

pre x) is illustrated in Table 1.

Using temporal operators, we can define a Counter node as follows.

Listing 5: Node with temporal operators

1 node Counter(init: int) returns (c: int);

2 let

3 c = init -> pre c + 1;

4 tel

In Counter, the output stream out is initialized to the input initialization value init, and it is incre-
mented at every timestep. Notice that out is recursively defined—the n+ 1st value of out is equal to
the nth value of out plus 1, except in the base case of initialization.
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0 1 2 3 . . .

1 1 1 1 1 . . .

2 2 2 2 2 . . .

3 3 3 3 3 . . .

1 -> 2 1 2 2 2 . . .

2 -> 3 2 3 3 3 . . .

pre (2 -> 3) ? 2 3 3 . . .

1 -> (2 -> 3) 1 3 3 3 . . .

(1 -> 2) -> 3 1 3 3 3 . . .

1 -> pre (2 -> 3) 1 2 3 3 . . .

Table 2: Stream computations for expression 1 -> pre (2 -> 3) at times 0, 1, . . .

The pre and -> operators provide a declarative and mathematically elegant way to define stateful
computations. An alternative, operational way to understand the functionality of node Counter is that
init is an input variable and c is a state variable. Initially, the value of c is that of init. At each
successive iteration, the new value of c is its old value (denoted as pre c) plus one.

A deceptively difficult example is defining in Lustre a stream with value (1, 2, 3, 3, 3, . . .), with infinite
repetitions of 3 from the third step on. A first guess might be the term 1 -> (2 -> 3) or perhaps the
term (1 -> 2) -> 3. However, both of these streams will omit the value 2, as they take the initial
value from the first argument of the outer arrow (which is 1 in both cases) and the non-initial values
from the second argument of the outer arrow (which is a stream of 3s in both cases). A key insight is
that the pre operator can also be viewed as a right-shift operator on streams. From this, the correct
answer is 1 -> pre (2 -> 3), which takes the initial value 1 and the remaining values from the stream
(?, 2, 3, 3, 3, . . .).

Table 2 helps illustrate the difference between the various expressions above.

A node that generates the stream (1, 2, 3, 3, 3, . . .) from no inputs can then be defined as follows.

Listing 6: Tricky output stream example

1 node N() returns(y: int);

2 let

3 -- defining output stream (1, 2, 3, 3, 3, ...)

4 y = 1 -> pre (2 -> 3);

5 tel

Another deceptively difficult example is the following Lustre node which outputs the stream of all
Fibonacci numbers in increasing order. Because Fib is defined in terms of the two previous Fibonacci
values, the first two steps need to be initialized. The example is tricky and may require some thought
for those new to Lustre.

Listing 7: Fibonacci numbers

1 node Fibonacci () returns(Fib: int);

2 let

3 Fib = 1 -> pre (1 -> Fib + pre Fib);

4 tel

The example can be perhaps easier to see by introducing local names for the subexpressions on the
equation’s right-hand side.
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Listing 8: Fibonacci numbers (alternative approach)

1 node Fibonacci () returns(Fib: int);

2 var preFib: int;

3 var prepreFib: int;

4 let

5 preFib = 0 -> pre Fib;

6 prepreFib = 1 -> pre preFib;

7 Fib = preFib + prepreFib;

8 tel

5 Declarative Semantics

Lustre has a declarative semantics, meaning that the order of equations in node bodies does not matter.
Because of this, node equations should not be viewed imperatively as assignments; instead, a node body
is a set of stream constraints of the form <var> = <expr>.

To illustrate this concept, consider the following Factorial node which outputs a stream of factorial
numbers (the nth value of the stream is n!). When defining output stream F, we can reference the
helper stream N before it is defined.

Listing 9: Factorial node

1 node Factorial () returns (F: int);

2 var N: int;

3 let

4 -- all the factorial numbers

5 F = 1 -> N * (pre F);

6 -- all the natural numbers

7 N = 0 -> (pre N) + 1;

8 tel

Even though Lustre has a declarative semantics and allows recursive definitions, circular definitions are
rejected. For example, the following node is invalid Lustre because the nth value of out1 is defined in
terms of the nth value of out2, and the nth value of out2 is defined in terms of the nth value of out1.

Listing 10: Node with circular dependencies

1 node Circular () returns (out1 , out2: int);

2 let

3 out1 = out2 + 1;

4 out2 = out1 - 1;

5 tel

In fact, there are no values for the streams out1 and out2 that satisfy both equations. However, even
if it is possible to satisfy all equations, as in the following example, any node with a circular dependence
is conservatively rejected.

Listing 11: Another node with circular dependencies

1 node Circular () returns (out1 , out2: int);

2 let

3 out1 = out2;

4 out2 = out1;

5 tel
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Note that there is no circularity in the definition of output N of node Factorial since N is defined in
terms of pre N, and not in terms of N itself.

6 Composite Types

In addition to the primitive types, Lustre supports records and arrays.

6.1 Records

Record types have the syntax

struct { <field 1> : <type 1>; ...; <field n> : <type n> }

They must be named and declared with a global type declaration of the form

type <ty name> = <type>;

Record values can be constructed with the syntax

<ty name> { <field 1> = <expr 1>; ... <field n> = <expr n> }

and destructed with the syntax

<record term>.<field>

as seen in the next example.

Listing 12: Record construction and destruction

1 type sensorData = struct { speed: real; height: real; direction: int };

2
3 node AdjustSensorData(in: sensorData) returns (out: sensorData);

4 var h: real;

5 let

6 h = if in.height < 0.0 then 0.0 else in.height;

7 out = sensorData { speed = in.speed;

8 height = h;

9 direction = in.direction };

6.2 Arrays

Array types have the syntax

<element type>^<numeral>

Values of an array type can be constructed in two different ways. Lustre supports the array literal
syntax of the form

[<element 1>, ..., <element n>]

as well as the (constant) array constructor syntax of the form

<element>^<length>

Array elements can be accessed with the standard array access syntax <array var>[<index>], with
zero-based indexing.
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Listing 13: Array construction

1 node ThreeArrays () returns (out1: bool ^5; out2: int ^4);

2 let

3 out1 = [true , true , false , true , false];

4 out2 = 1^4; -- equivalent to out2 = [1, 1, 1, 1]

5 tel

Listing 14: Array access

1 node Fst(in: int^10, k: int) returns (out: int);

2 let

3 out = if 0 < k < 10 then in[k] else in[0];

4 tel

7 Composition

A Lustre model can be hierarchically defined by defining nodes in terms of other nodes through the use
of node calls. Revisiting the Counter node, we can use node calls to instantiate two distinct counter
streams. In the following example, the output streams ctr1 and ctr2 of node Top are defined using
expressions that contain node calls. More specifically, output variable ctr1 is defined as the stream
output by node Counter when passed input 0, and the output variable ctr2 is defined as the stream
output by node Counter when passed input 5. Output P1 is a boolean stream representing the property
that ctr2 is greater than ctr1.

Note that nodes can have no inputs (as node Top below) or no outputs.

Listing 15: Lustre program with node calls

1 node Top() returns (ctr1 , ctr2: int; P1: bool);

2 let

3 ctr1 = Counter (0) + 3;

4 ctr2 = Counter (5);

5 P1 = (ctr2 > ctr1);

6 tel

7
8 node Counter(init: int) returns (out: int);

9 let

10 out = init -> pre out + 1;

11 tel

Node calls must respect the expected type checking rules: each argument of the call, which can be
any stream-denoting expressions, must have a type that matched the type of the corresponding input
parameter in the callee’s interface, and the return type of the callee must be a valid type for the context
of the node call.

Note that node Top can call node Counter, even though Top is defined before Counter in the Lustre
file. Similarly to equations in a node body, the order of node definitions in a file is immaterial. However,
the call graph cannot contain cycles. In other words, a node cannot be defined, directly or indirectly
(through subnodes), in terms of itself.

A call to a node with a single output stream of some type T can occur anywhere an expression of type
T can occur on the right-hand side of an equation in the caller’s body. In contrast, a call to a node
with multiple outputs can occur only in an equation of the form
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(<var 1>, ..., <var n>) = <node name>(<arg 1>, ..., <arg m>);

where <var 1>, . . . , <var n> are local or output variables of the calling node with types matching the
types of the outputs of the called node <node name>, in the same order as in the callee’s interface.

Listing 16: Calling nodes with multiple outputs

1 node Top(x: int) returns (P1: bool);

2 var positive: bool;

3 var nonnegative: bool;

4 let

5 (positive , nonnegative) = N(x);

6 P1 = positive => nonnegative;

7 tel

8
9 node N(x: int) returns (positive , nonnegative: bool);

10 let

11 positive = (x > 0);

12 nonnegative = (x >= 0);

13 tel

8 Common Auxiliary Nodes

While the temporal operators -> and pre may not seem very powerful, they can be used to define
auxiliary temporal operators, presented below.

Listing 17: Common auxiliary nodes

1 -- Y is true iff X has been true so far

2 node Sofar ( X : bool ) returns ( Y : bool ) ;

3 let

4 Y = X -> (X and (pre Y)) ;

5 tel

6
7 -- Z is true iff X has been true at some point in the past ,

8 -- and Y has been true since then.

9 node Since ( X, Y : bool ) returns ( Z : bool ) ;

10 let

11 Z = X or (Y and (false -> pre Z)) ;

12 tel

13
14 -- Y is true iff X was true in the initial timestep

15 node Initially(X: bool) returns (Y: bool)

16 let

17 Y = X -> true;

18 tel

19
20 -- Y is true iff X has been true at least once

21 node Once(X : bool) returns (Y : bool);

22 let

23 Y = (false -> pre Y) or X;

24 tel
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9 More Examples

For more examples, see the Kind 2 web application at: https://kind.cs.uiowa.edu/app/. Note that
these examples contain some language features that are extensions to Lustre (for example, contracts)
that are not covered in this document. For more information on Kind 2 and its extensions to Lustre,
please check its documentation at https://kind.cs.uiowa.edu.
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