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1 Kind 2

Kind 2 is a multi-engine, parallel, SMT-based automatic model checker for safety properties of
Lustre programs.

Kind 2 is a command-line tool. It takes as input a Lustre file annotated with properties to
be proven invariant (see Kind 2 Input), and outputs which of the properties are true for all
inputs, as well as an input sequence for those properties that are falsified. To ease processing
by external tools, Kind 2 can output its results in JSON and XML formats (see JSON / XML
Output).

By default Kind 2 runs a process for bounded model checking (BMC), two processes for k-
induction (one for a fixed value of k=2, and other for increasing values of k), several processes
for invariant generation, a process for IC3QE, and several processes for IC3IA in parallel on all
properties simultaneously. It incrementally outputs counterexamples to properties as well as
properties proved invariant.

The following command-line options control its operation (run kind2 --help for a full list).
See Techniques for configuration examples and more details on each technique.

--enable {BMC|IND|IND2|IC3QE|IC3IA|INVGEN|INVGENOS|...} Select model checking en-
gines

By default, all five model checking engines are run in parallel. Give any combination of --enable
BMC, --enable IND, --enable IND2, --enable IC3QE and --enable IC3IA to select which
engines to run. The option --enable BMC alone will not be able to prove properties valid,
choosing --enable IND and --enable IND2 only (or either of the two alone) will not produce
any results. Any other combination is sound (properties claimed to be invariant are indeed
invariant) and counterexample-complete (a counterexample will be produced for each property
that is not invariant, given enough time and resources).

--timeout <int> (default 0 = none) – Run for the given number of seconds of wall clock time

--smt_solver {Bitwuzla|cvc5|MathSAT|OpenSMT|SMTInterpol|Yices|Yices2|Z3} (de-
fault Z3) – Select SMT solver

--bitwuzla_bin <file> – Executable for Bitwuzla

--cvc5_bin <file> – Executable for cvc5

--mathsat_bin <file> – Executable for MathSAT 5

--opensmt_bin <file> – Executable for OpenSMT

--smtinterpol_jar <file> – JAR of SMTInterpol

--yices_bin <file> – Executable for Yices 1 (native input)

--yices2_bin <file> – Executable for Yices 2 (SMT input)

--z3_bin <file> – Executable for Z3
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-v Output informational messages

-json Output in JSON format

-xml Output in XML format

1.1 Try Kind 2 Online

Visit our web interface to try Kind 2 from your browser.

1.2 Download

If you use a Linux or a macOS computer, you can download an executable of the latest version
of Kind 2 from here. First make sure though that you have the required software described
next.

1.3 Required Software

To run Kind 2 the following software must be installed on your computer:

• Linux or macOS, and
• a supported SMT solver

– Bitwuzla (for inputs with only machine integers),
– cvc5,
– MathSAT 5,
– OpenSMT (v2.8.0),
– SMTInterpol,
– Yices 2,
– Yices 1, or
– Z3

Z3 is the presently recommended SMT solver and the default option. For best results, we
recommend using a combination of several solvers. For systems with integer and real vari-
ables, we recommend using Z3 as the main solver (--smt_solver Z3) and MathSAT as the
interpolating solver (--smt_itp_solver MathSAT). For systems with only machine integers, we
recommend using Bitwuzla as the main solver (--smt_solver Bitwuzla), MathSAT as the in-
terpolating solver (--smt_itp_solver MathSAT), and Z3 for performing quantifier elimination
(--smt_qe_solver Z3).
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1.4 VS Code Extension

You can also install our extension for Visual Studio Code which provides support for Kind 2.
The extension contains Linux and macOS binaries for Kind 2 and Z3 ready to use. Windows is
also supported through WSL2 (see here for more details).

1.5 Docker

Kind 2 is also available on Docker Hub.

1.5.1 Retrieving / updating the image

Install docker and then run

docker pull kind2/kind2:dev

Docker will retrieve the layers corresponding to the latest version of the Kind 2 repository,
develop version. If you are interested in the latest release, run

docker pull kind2/kind2

instead.

If you want to update your Kind 2 image to latest one, simply re-run the docker pull command.

1.5.2 Running Kind 2 through docker

To run Kind 2 on a file on your system, it is recommended to mount the folder in which this
file is as a volume. In practice, run

docker run -v <absolute_path_to_folder>:/lus kind2/kind2:dev <options> /lus/<your_
↪→file>

where

• <absolute_path_to_folder> is the absolute path to the folder your file is in,
• <your_file> is the lustre file you want to run Kind 2 on, and
• <options> are some Kind 2 options of your choice.

N.B.

• the fact that the path to your folder must be absolute is a docker constraint;
• mount point /lus is arbitrary and does not matter as long as it is consistent with the last

argument /lus/<your_file>. To avoid name clashes with folders already present in the
container however, it is recommended to use /lus;
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• replace kind2:dev by kind2 if you want to run the latest release of Kind2 instead of the
develop version;

• docker run does not update your local Kind 2 image to the latest one: the appropriate
docker pull command does.

1.5.3 Packaging your local version of Kind 2

In the docker directory at the top level of the Kind 2 repository, there is a Dockerfile you
can use to build your own Kind 2 image. To do so, just run

docker build -t kind2-local -f ./docker/Dockerfile .

at the root of the repository. kind2-local is given here as an example, feel free to call it
whatever you want.

Note that building your own local Kind 2 image does require access to the Internet. This
is because of the packages the build process needs to retrieve, as well as for downloading the z3
and cvc5 solvers.

1.6 Building and installing

If you prefer, you can build Kind 2 directly from sources, either through the OPAM package
manager (recommended) or directly using dune.

1.6.1 Using OPAM

Start by installing OPAM 2.x following the instructions on the website, and make sure OPAM
has been initialized by running opam init. If you want to build the development version of
Kind 2 that includes the most recent changes, as opposed to the latest release, then run

opam pin add -n kind2 https://github.com/kind2-mc/kind2.git

(You can always undo this change later using this command opam unpin kind2).

Otherwise, skip the step above and either run

opam install --update-invariant kind2

if you have OPAM 2.1 or later installed on your system, or run

opam depext kind2
opam install --unlock-base kind2

if you have an older version of OPAM (you can run opam --version to check the version).
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This guides the installation of the ZeroMQ C library and any other required external dependen-
cies using the default package manager for your OS (may ask sudo permission). It also builds
and installs a compatible version of the OCaml compiler and libraries, and the kind2 binary.
Now you can start using kind2.

Other options using OPAM

By default, kind2 will be installed into the bin directory of your current OPAM switch. Run

opam install kind2 --destdir=<DIR>

to install the Kind 2 binary into <DIR>/bin. This will also create directories <DIR>/doc and
<DIR>/lib.

In alternative, you can clone https://github.com/kind2-mc/kind2.git, move to its top-level di-
rectory, and run

make install

to have OPAM install kind2 and its dependencies.

Note that z3 is available in OPAM so it is possible to install it too with OPAM by running:

opam install z3

Be aware, however, that this takes quite a bit of time (up to 25 minutes).

1.6.2 Direct Installation Using Dune

To build directly from sources you will also need the following software first:

• OCaml 4.14 or later,
• Dune 2.7 or later,
• dune-build-info,
• OCaml bindings for ZMQ,
• Yojson,
• num,
• Menhir parser generator

First install this software on your system using your preferred method. Then clone the Kind 2
git repository, move to the top-level directory of the repository, and run

dune build src @install
dune install --sections=bin --prefix <DIR>

to install the Kind 2 binary into <DIR>/bin.

5

https://github.com/kind2-mc/kind2.git
https://github.com/ocaml/dune
https://github.com/issuu/ocaml-zmq
https://github.com/ocaml-community/yojson
https://github.com/ocaml/num
http://gallium.inria.fr/~fpottier/menhir/
https://github.com/kind2-mc/kind2
https://github.com/kind2-mc/kind2


You need a supported SMT solver in your PATH environment variable when running kind2.

1.7 Development

With OPAM 2.x you can create a local switch which will install all dependencies automatically.

opam switch create .
make

Alternatively, you can install all dependencies in your current switch by running:

opam install . --deps-only
make

For running the unit tests for front end, you can install ounit2 library using opam by running:

opam install ounit2

To run the ounit tests, you can use the following dune command:

dune test

1.8 Documentation

Documentation is available online in HTML or PDF forms.

In order to generate the documentation locally, you need:

• A GNU version of sed (gsed on OSX)
• Python v3.5 or later
• Sphinx

For HTML documentation, you additionally need:

• sphinx-press-theme

For PDF documentation, you additionally need:

• latexmk
• XeTeX
• lmodern

If you’re on Debian/Ubuntu, assuming you have Python 3 installed, you can run the following:

sudo apt-get install python3-sphinx latexmk texlive-xetex lmodern
pip3 install sphinx_press_theme
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See doc/usr/README.rst for more information.
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2 Techniques

This section presents the techniques available in Kind 2: how they work, and how they can be
tweaked through various options:

• k-Induction
• Invariant Generation
• IC3

2.1 Compositional reasoning

When verifying a node n, compositional reasoning consists in abstracting the complexity of the
subnodes of n by their contracts (see Contract Semantics). The idea is that the contract has
typically a lot less state than the node it specifies, which in addition to its own state contains
that of its subnodes recursively.

Compositional reasoning thus improves the scalability of Kind 2 by taking advantage of infor-
mation provided by the user to abstract the complexity away. When in compositional mode
(--compositional true), Kind 2 will abstract all calls (to subnodes that have a contract with
at least one guarantee or one mode) in the top node and verify the resulting, abstract system.

A successful compositional proof of a node does not guarantee the correctness of the concrete
(un-abstracted) node though, since the subnodes have not been verified. For this reason com-
positional reasoning is usually applied in conjunction with modular reasoning, discussed in the
next section.

2.2 Modular reasoning

Modular reasoning is activated with the option --modular true. In this mode, Kind 2 will
perform whatever type of analysis is specified by the other flags on every node of the hierarchy,
bottom-up. The analysis is completed on every node even if some node is proved unsafe because
of the falsification of one of its properties.

A timeout for each analysis can be specified using the --timeout_analysis flag. It can be used
in conjunction with the global timeout given with the --timeout or --timeout_wall time.

Internally Kind 2 builds on previous analyses when starting a new one. For instance, by using
the invariants previously discovered in subnodes of the node under analysis.
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2.3 Refinement in compositional and modular analyses

An interesting configuration is

kind2 --modular true --compositional true ...

If top calls sub and we analyze top, it means we have previously analyzed sub. We are running
in compositional mode so the call to sub is originally abstracted by its contract. Say the analysis
fails with a counterexample. The counterexample might be spurious for the concrete version of
sub: the failure would not happen if we used the concrete call to sub instead of the abstract
one.

Say now that when we analyzed sub, we proved that it is correct. In this case Kind 2 will attempt
to refine the call to sub in top. That is, undo the abstraction and use the implementation of
sub in a new analysis.

Note that since sub is known to be correct, it is stronger than its contract. More precisely, it ac-
cepts fewer execution traces than its contract does. Hence anything proved with the abstraction
of sub is still valid after refinement, and Kind 2 will use these results right away.

2.4 Modifiers to control node/function abstraction

To prevent Kind 2 from abstracting a specific node or function that has both a body and
a contract during compositional analysis, use the transparent modifier before the node or
function keywords:

transparent function F(...) returns (...)

To prevent Kind 2 from refining a specific node or function that has both a body and a con-
tract during compositional and modular analyses, use the opaque modifier before the node or
function keywords:

opaque node N(...) returns (...)
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3 k-Induction

k-Induction is a well-known technique for the verification of transition systems. A k-induction
engine is composed of two parts: base and step. Base performs bounded model checking on the
properties, i.e. checks the base case. Step checks whether it is possible to reach a violation of
one of the properties from a trace of states satisfying them: the inductive step.

In Kind 2 base and step run in parallel, and can be enabled separately. Running step alone
with

kind2 --enable IND <file>

will not yield anything interesting, as step cannot falsify properties nor prove anything without
base. To run the actual k-induction engine, you must enable base (BMC) and step (IND):

kind2 --enable BMC --enable IND <file>

3.1 Options

k-Induction can be tweaked with the following options.

--bmc_max <int> (default 0) – sets an upper bound on the number of unrolling base and step
will perform. 0 is for unlimited.

--ind_compress <bool> (default false) – activates path compression in step, i.e. counterex-
amples with a loop will be dismissed. You can activate several path compression strategies:

• --ind_compress_equal <bool> (default true) – compresses states if they are equal mod-
ulo inputs

• --ind_compress_same_succ <bool> (default false) – compresses states if they have the
same successors (experimental)

• --ind_compress_same_pred <bool> (default false) – compresses states if they have the
same predecessors (experimental)

--ind_lazy_invariants <bool> (default false) – deactivates eager use of invariants in step.
Instead, when a step counterexample is found each invariant is evaluated on the model until
one blocks it. The invariant is then asserted to block the counterexample, and step starts a new
check-sat.
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4 Invariant Generation

The invariant generation technique currently implemented in Kind 2 is an improved version of
the one implemented in PKind. It works by instantiating templates on a set of terms provided
by a syntactic analysis of the system.

The main improvement is that in Kind 2, invariant generation is modular. That is to say it
can attempt to discover invariants for subnodes of the top node. The idea is that looking at
small components and discovering invariants for them provides results faster than analyzing the
system monolithically. To disable the modular behavior of invariant generation, use the option
--invgen_top_only true.

There are two invariant generation techniques: one state (OS) and two state (TS). The former
will only look for invariants between the state variables in the current state, while the latter
tries to relate the current state with the previous state. The two are separated because as the
system grows in size, two state invariant generation can become very expensive.

The one state and two state variants can be activated with --enable INVGENOS and --enable
INVGEN respectively.

Note that, in theory, two state invariant generation is strictly more powerful than the one state
version, albeit slower, since two state can also discover one state invariants. When both variants
are running, Kind 2 optimizes two state invariant generation by forcing it to look only for two
state invariants.

The bottom line is that running i) only two state invariant generation or ii) one state and two
states will discover the same invariants. In the case of i) the same techniques seeks both one
state and two state invariants at the same time, which is slower than ii) where one state and
two state invariants are sought by different processes running in parallel.

4.1 Options

Invariant generation can be tweaked using the following options. Note that this will affect both
the one state and two state process if both are running.

--invgen_prune_trivial <bool> (default true) – when invariants are discovered, do not com-
municate one-state invariants implied by previous one-state invariants, and two-state invariants
implied by previous two-state invariants or the transition relation.

--invgen_max_succ <int> (default 1) – the number of unrolling to perform on subsystems
before moving on to the next one in the hierarchy.

--invgen_lift_candidates <bool> (default false) – if true, then candidate terms generated
for subsystems will be lifted to their callers. Warning this might choke invariant generation
with a huge number of candidates for large enough systems.
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--invgen_mine_trans <bool> (default false) – if true, the transition relation will be mined
for candidate terms. Can make the set of candidate terms untractable.

--invgen_renice <int> (only positive values) – the bigger the parameter, the lower the pri-
ority of invariant generation will be for the operating system.

4.2 Lock Step K-induction

Another improvement on the PKind invariant generation is the way the search for a k-induction
proof of the candidate invariants is performed. In PKind, a bounded model checking engine is
run up to a certain depth d and discovers falsifiable candidate invariants. The graph used to
produce the potential invariants is refined based on this information. Once the bound on the
depth is reached, an inductive step instance looks for actual invariants by unrolling up to d.

In Kind 2, base and step are performed in lock step. Once the candidate invariant graph has
been updated by base for some depth, step runs at the same depth and broadcasts the invariants
it discovers to the whole framework. It is thus possible to generate invariants earlier and thus
speed up the whole analysis.

12



5 IC3

Kind 2 supports two SMT-based extensions of the SAT-based verification technique IC3. The
challenge when lifting IC3 to infinite state systems is the computation of pre-images of the
system’s transition relation. The first extension, IC3QE, uses quantifier elimination to compute
the pre-image. If the input problem is in linear integer arithmetic, Kind 2 uses a built-in method
that performs a fast approximate quantifier elimination. Otherwise, the quantifier elimination
is delegated to an SMT solver, which is at this time possible with Z3 and cvc5.

The second extension, IC3IA, implements a version of IC3 that relies on implicit (predicate)
abstraction by Cimatti et al. The main idea of the method is to work on an abstraction of the
state space induced by a set of predicates so that the computation of pre-images of the system’s
transition relation does not require the use of quantifier elimination. As with most abstraction
methods, this introduces the problem of having to handle spurious abstract counterexamples for
the property to be proven, that is, traces that falsify the property in the abstracted system but
are not actual executions of the original system. The method addresses this problem by using an
abstraction refinement technique based on logical interpolants. Kind 2 currently supports three
proof-based interpolating SMT solvers for the generation of interpolants: MathSAT, SMTIn-
terpol, and OpenSMT. In addition, Kind 2 also implements a built-in method for producing
interpolants based on quantifier elimination that can be used with Z3 and cvc5. When the
IC3IA engine is enabled, each property is handled separately by a different process; two when
the built-in method for producing interpolants is used, one generating backward interpolants
and another one generating forward interpolants.

To enable nothing but the IC3 engines (IC3QE and IC3IA), run

kind2 --enable IC3 <file>

If you only want to enable of the engines, e.g. IC3QE, run

kind2 --enable IC3QE <file>

5.1 IC3-IA Options

--smt_itp_solver {MathSAT | SMTInterpol | Z3qe | cvc5qe | OpenSMT} – set the SMT
solver used for interpolation.

--ic3ia_max <int> – set the maximum number of IC3IA parallel processes. Each process
checks an individual property.
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5.2 IC3-QE Options

--qe_method {precise|impl|cooper} (default cooper) – select the quantifier elimination
strategy: cooper for the built-in approximate method, precise or impl to delegate to the
SMT solver. The precise strategy computes the exact pre-image, which is an expensive oper-
ation. The impl strategy under-approximates the result by computing a conjunctive implicant
first. If the problem is not in linear integer arithmetic, cooper falls back to impl.

--smt_qe_solver {Z3 | cvc5} (default detect) – set the SMT solver used for quantifier elim-
ination

To see other advanced options run --help_of ic3qe.
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6 Kind 2 Input

Kind 2 reads input models written in an extension of the dataflow Lustre language (see this
primer for a quick introduction to the Lustre language). Kind 2 supports most of the Lustre
V4 syntax and some elements of Lustre V6. See the file examples/syntax-test.lus for examples
of all supported language constructs.

6.1 Properties and top-level node

To specify an invariant property to verify in a Lustre node, add the following annotation in the
body (i.e. between keywords let and tel) of the node:

--%PROPERTY ["<name>"] <bool_expr> ;

or, use a check statement:

check ["<name>"] <bool_expr> ;

where <name> is an identifier for the property and <bool_expr> is a Boolean Lustre expression.

In addition to invariant properties, Kind 2 also accepts dedicated syntax for checking the exis-
tence of a witness. You can specify reachability properties of the form:

--%PROPERTY reachable ["<name>"] <bool_expr> [from <int>] [within <int>];

or, using a check statement:

check reachable ["<name>"] <bool_expr> [from <int>] [within <int>];

where the clauses between square brackets are optional. The optional clauses allow you to spec-
ify, exclusively or at the same time, a lower and upper bound on the number of execution steps
in the witness trace. Concretely, check reachable P from m asks whether a state satisfying
P is reachable in m steps or more while check reachable P within n asks whether a state
satisfying P is reachable in n steps or less. Moreover, Kind 2 also supports the following syntax
for the specification of properties where the lower and upper bounds are the same:

check reachable ["<name>"] <bool_expr> at <int>;

Without modular reasoning active, Kind 2 only analyzes the properties of what it calls the top
nodes. By default, any node that is not depended on by another node (i.e. called by that node)
is a top node. Alternatively, nodes can be marked as main nodes by doing the following:

--%MAIN ;
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to the body of that node.

You can also specify the main node in the command line arguments, with

kind2 --lus_main <node_name> ...

Main nodes specified by the command line option override main nodes annotated in the source
code. If any main nodes exist then only main nodes are analyzed (top nodes are not).

6.1.1 Examples

The following example declares two nodes greycounter and intcounter, as well as an observer
node top that calls these nodes and verifies that their outputs are the same. The node top is
annotated with --%MAIN ; which makes it a main node. The line --%PROPERTY OK; means we
want to verify that the Boolean stream OK is always true.

node greycounter (reset: bool) returns (out: bool);
var a, b: bool;
let
a = false -> (not reset and not pre b);
b = false -> (not reset and pre a);
out = a and b;

tel

node intcounter (reset: bool; const max: int) returns (out: bool);
var t: int;
let
t = 0 -> if reset or pre t = max then 0 else pre t + 1;
out = t = 2;

tel

node top (reset: bool) returns (OK: bool);
var b, d: bool;
let
b = greycounter(reset);
d = intcounter(reset, 3);
OK = b = d;

--%MAIN ;

--%PROPERTY OK;

tel

Kind 2 produces the following on standard output when run with the default options (kind2
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<file_name.lus>):

kind2 v1.5.1

==============================================================
Analyzing top
with First top: 'top'

subsystems
| concrete: intcounter, greycounter

<Success> Property OK is valid by inductive step after 0.065s.

--------------------------------------------------------------
Summary of properties:
--------------------------------------------------------------
OK: valid (k=5)
==============================================================

We can see here that the property OK has been proven valid for the system (by k-induction).

The second example demonstrates reachability properties using a single counter node:

node counter () returns (out: int);
let

out = 0 -> pre out + 1;

check reachable out = 10;
check reachable out = 100 from 99;
check reachable out = 50 at 50;
check reachable out = 15 from 10 within 20;

check reachable out = 10 within 5;
tel

Kind 2 produces output reporting that the first four expressions are reachable, while the last
is not. If you want to print a witness in the standard output for each proven reachability
property, pass --print_witness true to Kind 2. To dump the witness to a file instead, pass
--dump_witness true to Kind 2.
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6.1.2 Conditional Properties

Invariant properties of a node are often case-based, with each case describing what the com-
ponent should do depending on a specific situation. These properties are usually encoded in
conditional properties of the form situation => behavior, and are often better represented
in terms of the mode logic of a node (see subsection Modes in Contract Semantics). However,
these properties do not always imply modal behavior, or they are not defined in terms of the
interface of a node. For those cases, Kind 2 allows the user to specify a conditional invariant
property of the form B => A as follows:

check A provided B;

This dedicated syntax makes writing properties more straightforward and user-friendly, but
also allows Kind 2 to trigger additional checks. A challenge for the user with these kinds of
properties arises if the guard B may always be false, for example due to a modeling error. The
user may believe that the property is interesting and true, whereas the property is vacuously
true.

When the dedicated syntax above is used, Kind 2 simultaneously checks that B => A is in-
variant and B is reachable. If B => A is in fact invariant, the reachability check lets you
know whether the implication is trivially true or not. Notice that when running Kind 2 in
modular mode, the reachability check is performed locally to a node without taking call con-
texts into account; only the specified assumptions are considered. You can disable this check
by passing --check_nonvacuity false to Kind 2, or by suppressing all reachability checks
(--check_reach false).

6.2 Contracts

A contract (A,G,M)for a node is a set of assumptions A, a set of guarantees G, and a set of
modes M. The semantics of contracts is given in the Contract Semantics section, here we focus
on the input format for contracts. Contracts are specified either locally, using the inline syntax,
or externally in a contract node. Both the local and external syntax have a body composed of
items, each of which define

• a ghost variable / constant,
• an assumption,
• a guarantee,
• a mode, or
• an import of a contract node.

They are presented in detail below, after the discussion on local and external syntaxes.
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6.2.1 Inline syntax

A local contract is a special comment between the signature of the node

node <id> (...) returns (...) ;

and its body. That is, between the ; of the node signature and the let opening its body.

A local contract is a special block comment of the form

(*@contract
[item]+

*)

or

/*@contract
[item]+

*/

6.2.2 External syntax

A contract node is very similar to a traditional lustre node. The two differences are that

• it starts with contract instead of node, and
• its body can only mention contract items.

A contract node thus has form

contract <id> (<in_params>) returns (<out_params>) ;
let
[item]+

tel

To use a contract node one needs to import it through an inline contract. See the next section
for more details.

6.2.3 Contract items and restrictions

Ghost variables and constants

A ghost variable (constant) is a stream that is local to the contract. That is, it is not accessible
from the body of the node specified. Ghost variables (constants) are defined with the var
(const) keyword. Kind 2 performs type inference for constants so in most cases type annotations
are not necessary.

The general syntax is
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const <id> [: <type>] = <expr> ;
var <id> : <type> = <expr> ;

For instance:

const max = 42 ;
var ghost_stream: real = if input > max then max else input ;

Assumptions

An assumption over a node n is a constraint one must respect in order to use n legally. It cannot
depend on outputs of n in the current state, but referring to outputs under a pre is fine.

The idea is that it does not make sense to ask the caller to respect some constraints over the
outputs of n, as the caller has no control over them other than the inputs it feeds n with. The
assumption may however depend on previous values of the outputs produced by n.

Assumptions are given with the assume keyword, followed by any legal Boolean expression:

assume <expr> ;

Guarantees

Unlike assumptions, guarantees do not have any restrictions on the streams they can depend
on. They typically mention the outputs in the current state since they express the behavior of
the node they specified under the assumptions of this node.

Guarantees are given with the guarantee keyword, followed by any legal Boolean expression:

guarantee <expr> ;

Modes

A mode (R,E) is a set of requires R and a set of ensures E. Modes are named to ease traceability
and improve feedback. The general syntax is

mode <id> (
[require <expr> ;]*
[ensure <expr> ;]*

) ;

For instance:
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mode engaging (
require true -> not pre engage_input ;
require engage_input ;
-- No ensure, same as `ensure true ;`.

) ;
mode engaged (
require engage_input ;
require false -> pre engage_input ;
ensure output <= upper_bound ;
ensure lower_bound <= output ;

) ;

Imports

A contract import merges the current contract with the one imported. That is, if the current
contract is (A,G,M) and we import (A',G',M'), the resulting contract is (A U A', G U G',
M U M') where U is set union. However, each contract import introduces its own namespace to
avoid name collisions.

When importing a contract, it is necessary to specify how the instantiation of the contract is
performed. This defines a mapping from the input (output) formal parameters to the actual
ones of the import.

When importing contract c in the contract of node n, the actual input parameters of the import
of c cannot depend on outputs of n in the current state. The reason is that the distinction
between inputs and outputs lets Kind 2 check that the assumptions requirements make sense,
i.e. do not depend on outputs of n in the current state.

The general syntax is

import <id> ( <expr>,* <expr> ) returns ( <id>,* <id> ) ;

For instance:

contract spec (engage, disengage: bool) returns (engaged: bool) ;
let ... tel

node my_node (
-- Flags are "signals" here, but `bool`s in the contract.
engage, disengage: real

) returns (
engaged: real

) ;
(*@contract
var bool_eng: bool = engage <> 0.0 ;
var bool_dis: bool = disengage <> 0.0 ;

(continues on next page)
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var bool_enged: bool = engaged <> 0.0 ;

var never_triggered: bool = (
not bool_eng -> not bool_eng and pre never_triggered

) ;

assume not (bool_eng and bool_dis) ;
guarantee true -> (
(not engage and not pre bool_eng) => not engaged

) ;

mode init (
require never_triggered ;
ensure not bool_enged ;

) ;

import spec (bool_eng, bool_dis) returns (bool_enged) ;
*)
let ... tel

Mode references

Once a mode has been defined it is possible to refer to it with

::<scope>::<mode_id>

where <mode_id> is the name of the mode, and <scope> is the path to the mode in terms of
contract imports.

In the example from the previous section for instance, say contract spec has a mode m. The
inline contract of my_node can refer to it by

::spec::m

To refer to the init mode:

::init

A mode reference is syntactic sugar for the requires of the mode in question. So if mode m is

mode m (
require <r_1> ;
require <r_2> ;
...
require <r_n> ; -- Last require.

(continues on next page)
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...
) ;

then ::<path>::m is exactly the same as

(<r_1> and <r_1> and ... and <r_n>)

N.B.: a mode reference

• is a Lustre expression of type bool just like any other Boolean expression. It can appear
under a pre, be used in a node call or a contract import, etc.

• is only legal outside the mode item itself. That is, no self-references are allowed. Forward
references are allowed.

An interesting use-case for mode references is that of checking properties over the specification
itself. One may want to do so to make sure the specification behaves as intended. For instance

mode m1 (...) ;
mode m2 (...) ;
mode m3 (...) ;

guarantee true -> ( -- `m3` cannot succeed to `m1`.
(pre ::m1) => not ::m3

) ;
guarantee true -> ( -- `m1`, `m2` and `m3` are exclusive.
not (::m1 and ::m2 and ::m3)

) ;

6.2.4 Merge, When, Activate and Restart

Note: the first few examples of this section illustrating (unsafe) uses of when and
activate are not legal in Kind 2. They aim at introducing the semantics of lustre
clocks. As discussed below, they are only legal when used inside a merge, hence
making them safe clock-wise.

Also, activate and restart are actually not a legal Lustre v6 operator. They are
however legal in Scade 6.

A merge is an operator combining several streams defined on complementary clocks. There
is two ways to define a stream on a clock. First, by wrapping its definition inside a when.

node example (in: int) returns (out: int) ;
var in_pos: bool ; x: int ;
let
...

(continues on next page)
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in_pos = in >= 0 ;
x = in when in_pos ;
...

tel

Here, x is only defined when in_pos, its clock, is true. That is, a trace of execution of example
sliced to x could be

step in in_pos x
0 3 true 3
1 -2 false //
2 -1 false //
3 7 true 7
4 -42 true //

where // indicates that x undefined.

The second way to define a stream on a clock is to wrap a node call with the activate keyword.
The syntax for this is

(activate <node_name> every <clock>)(<input_1>, <input_2>, ...)

For example, consider the following node:

node sum_ge_10 (in: int) returns (out: bool) ;
var sum: int ;
let
sum = in + (0 -> pre sum) ;
out = sum >= 10 ;

tel

Say now we call this node as follows:

node example (in: int) returns (...) ;
var tmp, in_pos: bool ;
let
...
in_pos = in >= 0 ;
tmp = (activate sum_ge_10 every in_pos)(in) ;
...

tel

That is, we want sum_ge_10(in) to tick iff in is positive. Here is an example trace of example
sliced to tmp; notice how the internal state of sum_ge_10 (i.e. pre sum_ge_10.sum) is main-
tained so that it does refer to the value of sum_ge_10.sum at the last clock tick of the “activate“:
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step in in_pos tmp sum_ge_10.in pre sum_ge_10.sum sum_ge_10.sum
0 3 true false 3 nil 3
1 2 true false 2 3 5
2 -1 false nil nil 5 nil
3 2 true false 2 5 7
4 -7 false nil nil 7 nil
5 35 true true 35 7 42
6 -2 false nil nil 42 nil

Now, as mentioned above the merge operator combines two streams defined on complimentary
clocks. The syntax of merge is:

merge( <clock> ; <e_1> ; <e_2> )

where e_1 and e_2 are streams defined on <clock> and not <clock> respectively, or on not
<clock> and <clock> respectively.

Building on the previous example, say add two new streams pre_tmp and safe_tmp:

node example (in: int) returns (...) ;
var tmp, in_pos, pre_tmp, safe_tmp: bool ;
let
...
in_pos = in >= 0 ;
tmp = (activate sum_ge_10 every in_pos)(in) ;
pre_tmp = false -> pre safe_tmp ;
safe_tmp = merge( in_pos ; tmp ; pre_tmp when not in_pos ) ;
...

tel

That is, safe_tmp is the value of tmp whenever it is defined, otherwise it is the previous value
of safe_tmp if any, and false otherwise. The execution trace given above becomes

step in in_pos tmp pre_tmp safe_tmp
0 3 true false false false
1 2 true false false false
2 -1 false nil false false
3 2 true false false false
4 -7 false nil false false
5 35 true true false true
6 -2 false nil true true

Just like with uninitialized pres, if not careful one can easily end up manipulating undefined
streams. Kind 2 forces good practice by allowing when and activate ... every expressions
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only inside a merge. All the examples of this section above this point are thus invalid from
Kind 2’s point of view.

Rewriting them as valid Kind 2 input is not difficult however. Here is a legal version of the last
example:

node example (in: int) returns (...) ;
var in_pos, pre_tmp, safe_tmp: bool ;
let
...
in_pos = in >= 0 ;
pre_tmp = false -> pre safe_tmp ;
safe_tmp = merge(
in_pos ;
(activate sum_ge_10 every in_pos)(in) ;
pre_tmp when not in_pos

) ;
...

tel

Kind 2 supports resetting the internal state of a node to its initial state by using the construct
restart/every. Writing

(restart n every c)(x1, ..., xn)

makes a call to the node n with arguments x1, …, xn and every time the Boolean stream c is
true, the internal state of the node is reset to its initial value.

In the example below, the node top makes a call to counter (which is an integer counter modulo
a constant max) which is reset every time the input stream reset is true.

node counter (const max: int) returns (t: int);
let
t = 0 -> if pre t = max then 0 else pre t + 1;

tel

node top (reset: bool) returns (c: int);
let
c = (restart counter every reset)(3);

tel

A trace of execution for the node top could be:
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step reset c
0 false 0
1 false 1
2 false 2
3 false 3
4 true 0
5 false 1
6 false 2
7 true 0
8 true 0
9 false 1

Note: This construction can be encoded in traditional Lustre by having a Boolean
input for the reset stream for each node. However providing a built-in way to do it
facilitates the modeling of complex control systems.

Restart and activate can also be combined in the following way:

(activate (restart n every r) every c)(a1, ..., an)
(activate n every c restart every r)(a1, ..., an)

These two calls are the same (the second one is just syntactic sugar). The (instance of the)
node n is restarted whenever r is true and the resulting call is activated when the clock c is
true. Notice that the restart clock r is also sampled by c in this call.

6.3 Partially defined nodes

Kind 2 allows nodes to define their outputs only partially. For instance, the node

node count (trigger: bool) returns (count: int ; error: bool) ;
(*@contract
var once: bool = trigger or (false -> pre once) ;
guarantee count >= 0 ;
mode still_zero (
require not once ;
ensure count = 0 ;

) ;
mode gt (
require not ::still_zero ;
ensure count > 0 ;

) ;
*)
let

(continues on next page)

27



(continued from previous page)

count = (if trigger then 1 else 0) + (0 -> pre count) ;
tel

can be analyzed: first for mode exhaustiveness, and the body is checked against its contract,
although it is only partially defined. Here, both will succeed.

6.4 The imported keyword

Nodes (and functions, see below) can be declared imported. This means that the node does not
have a body (let ... tel). In a Lustre compiler, this is usually used to encode a C function
or more generally a call to an external library.

node imported no_body (inputs: ...) returns (outputs: ...) ;

In Kind 2, this means that the node is always abstract in the contract sense. It can never be
refined, and is always abstracted by its contract. If none is given, then the implicit (rather
weak) contract

(*@contract
assume true ;
guarantee true ;

*)

is used.

In a modular analysis, imported nodes will not be analyzed, although if their contract has
modes they will be checked for exhaustiveness, consistently with the usual Kind 2 contract
workflow. Every output of an imported node is assumed to depend on every input. This may
lead Kind 2 to detect circular dependencies that do not exist in an _actual_ system, resulting in
the rejection of an input model. To make Kind 2 accept such model, the imported node must be
refined by decomposing it into smaller subnodes and specifying the actual dependencies among
inputs and outputs.

6.4.1 Partially defined nodes VS imported

Kind 2 allows partially defined nodes, that is nodes in which some streams do not have a
definition. At first glance, it might seem like a node with no definitions at all (with an empty
body) is the same as an imported node.

It is not the case. A partially defined node still has a (potentially empty) body which can be
analyzed. The fact that it is not completely defined does not change this fact. If a partially
defined node is at the top level, or is in the cone of influence of the top node in a modular
analysis, then it’s body will be analyzed.
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An imported node on the other hand explicitly does not have a body. Its non-existent body
will thus never be analyzed.

6.5 Functions

Kind 2 supports the function keyword which is used just like the node one but has slightly
different semantics. Like the name suggests, the output(s) of a function should be a non-
temporal combination of its inputs. That is, a function cannot depend on the ->, pre, merge,
when, condact, or activate operators. A function is also not allowed to call a node, only other
functions. In Lustre terms, functions are stateless.

In Kind 2, these restrictions extend to the contract attached to the function, if any. Note that
besides the ones mentioned above, no additional restrictions are enforced on functions compared
to nodes. In particular, functional congruence is not enforced on partially defined functions,
imported functions, and functions abstracted by their contracts. That is, Kind 2 might return
a counterexample where two calls to an abstract function with the same input values provide
different output values. To prevent this kind of counterexamples from happening, Kind 2 offers
an option called --enforce_func_congruence which enforces abstract functions to behave as
mathematical functions. The downside of using this option is that the IC3QE engine and
IC3IA engine with the Z3qe or cvc5qe options are forced to shut down because its current
implementation cannot reason about the resulting system.

6.5.1 Benefits

Functions are interesting in the model-checking context of Kind 2 mainly as a mean to make
an abstraction more precise. A realistic use-case is when one wants to abstract non-linear
expressions. While the simple expression x*y seems harmless, at SMT-level it means bringing
in the theory of non-linear arithmetic.

Non-linear arithmetic has a huge impact not only on the performances of the underlying SMT
solvers, but also on the SMT-level features Kind 2 can use (not to mention undecidability).
Typically, non-lineary arithmetic tends to prevent Kind 2 from performing satisfiability checks
with assumptions, a feature it heavily relies on.

The bottom line is that as soon as some non-linear expression appear, Kind 2 will most likely
fail to analyze most non-trivial systems because the underlying solver will simply give up.

Hence, it is usually extremely rewarding to abstract non-linear expressions away in a separate
function equipped with a contract. The contract would be a linear abstraction of the non-linear
expression that is precise enough to prove the system using correct. That way, a compositional
analysis would i) verify the abstraction is correct and ii) analyze the rest of the system using
this abstraction, thus making the analysis a linear one.

Using a function instead of a node simply results in a better abstraction. Kind 2 will encode,
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at SMT-level, that the outputs of this component depend on the current version of its inputs
only, not on its previous values.

6.6 If statements and frame conditions

Within node definitions, Kind 2 has support for two features that allow the programmer to use
a more imperative style– (1) if statements and (2) frame conditions.

6.6.1 If statements

Kind 2 has always supported conditional expressions of the form x = if condition then
expr1 else expr2, where the if/then/else expression either evaluates to expression1 or
expression2, depending on the value of condition. However, in some circumstances, it may
be more natural to use if statements that serve as control flow (rather than evaluate to a
value). For example, Kind 2 now supports statements of the form:

if condition1 then
y1 = expr1;
y2 = expr2;

elsif condition2 then
y1 = expr3;
y2 = expr4;

else
y1 = expr5;
y2 = expr6;

fi

In the above block, if condition1 is true, then y1 and y2 will be set to expr1 and expr2,
respectively. Otherwise, y1 and y2 will be set to either expr3 and expr4 or expr5 and expr6,
depending on the value of condition2. The if statement is closed with the fi token. As with
other mainstream programming languages, Kind 2 allows for arbitrary nesting of if statements,
as well as writing if statements that do not have any else or elsif blocks.

Note: If statements are syntactic sugar for conditional expressions. The if statement above is
equivalent to:

y1 = if condition1 then expr1 else (if condition2 then expr3 else expr5);
y2 = if condition1 then expr2 else (if condition2 then expr4 else expr6);
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6.6.2 Frame conditions

Kind 2 also has support for code blocks with frame conditions. At the beginning of the block
(denoted by the frame keyword), the user specifies a list of variables that they wish to define
within the frame block. All variables defined within the frame block must be present in this
list. Then, initial values are optionally specified for these variables. Variables are defined within
the frame block body (denoted by the let and tel keywords). It is possible to leave variables
(partially or fully) undefined: On the first timestep, each variable is set equal to its initialization
value, if one exists. On other timesteps, each undefined variable stutters (it is set equal to its
value on the previous timestep).

The following example involves three variables y1, y2, and y3. Since y1 is left undefined
within the frame block body, it will always be equal to 0 (its initialization value). y2 will have
value 100, 0, 1, 2, 3, ... because it is set equal to its initialization value (100) on the first
timestep, but on other timesteps it is set equal to counter(). Even though y3 is fully defined
within the frame block (with no unguarded pre expressions), its initialization value is still used,
so it is equal to 5, 1, 2, 3, ....

node example() returns (y1, y2, y3: int);
let

frame ( y1, y2, y3 )
(* Initializations *)
y1 = 0; y2 = 100; y3 = 5;

(* Body *)
let

y2 = pre counter();
y3 = counter();

tel
tel

node counter() returns (y: int);
let

y = 0 -> pre y + 1;
tel

Frame conditions are especially useful when combined with the if statements described in the
previous subsection, as variables can be left undefined in some branches of the if statement.

node example() returns (y1, y2: int);
let

frame ( y1, y2 )
(* Initializations *)
y1 = 0;
y2 = 100;

(continues on next page)
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(* Body *)
let

if (counter() < 10)
then

y1 = counter();
else

y2 = counter() * 2;
fi

tel
tel

node counter() returns (y: int);
let

y = 0 -> pre y + 1;
tel

In the above example, y1 is left undefined in the else branch of the if statement, and y2
is left undefined in the then branch. y1 is initialized on the first timestep, set to be equal
to counter() on the second through tenth timesteps, and then stutters (staying at 9) for the
remaining timesteps. On the other hand, y2 starts at its initialization value (100) and stutters
there for the first 10 timesteps, and then is set to counter() * 2 for the remaining timesteps.

Note that variables do not have to have initializations. When no initialization is given, a
variable’s initial value is equal to the initial value of the expression defined in the frame block
body. If the corresponding expression is undefined in the first timestep, then the variable is
also undefined in the first timestep. For example, the following code is supported because even
though y1 and y2 do not have an initializations, they are present in the list of variables frame
( y1, y2 ). The initial value of y1 is 0 (the initial value assigned by counter()), and the
initial value of y2 is undefined (due to the unguarded pre).

frame ( y1, y2 )
let

y1 = counter();
y2 = pre counter();

tel

node counter() returns (y: int);
let

y = 0 -> pre y + 1;
tel

Also, it is still possible to assign to multiple variables at once (equations of the form y1, y2 =
(expr1, expr2);) in either the initializations or the frame block body.
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The frame block semantics may introduce unguarded pre expressions. For example, the defini-
tion of y in the following code block is equivalent to y = pre y. So, Kind 2 will produce two
warning messages. The first will state that y is uninitialized in the frame block, and the second
will state that there is an unguarded pre (due to this lack of initialization).

frame ( y )
let
tel

Similarly, in the following code block, the definitions of y1 and y2 are equivalent to y1 =
if cond then 0 else pre y1 and y2 = if cond then pre y2 else 1, respectively. This
situation (and any other situation where the frame block semantics result in the generation of
an unguarded pre) will also generate the two warnings as discussed in the previous paragraph.

frame (y1, y2)
let

if cond
then

y1 = 0;
else

y2 = 1;
fi

tel

6.6.3 Restrictions

A frame block cannot be nested within an if statement or another frame block, as demonstrated
in the following examples:

if condition
then

frame ( y1, y2 )
y1 = init1; y2 = init2;
let

y1 = 10;
tel

fi

frame ( y1, y2 )
y1 = init1; y2 = init2;
let

y1 = expr1;
frame ( y2 )
y2 = init3;
let

(continues on next page)
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y2 = expr2;
tel

tel

Assertions, MAIN annotations, and PROPERTY annotations also cannot be placed within if state-
ments or frame blocks.

Since an initialization only defines a variable at the first timestep, it need not be stateful.
Therefore, a frame block initialization cannot contain any pre or -> operators. This restriction
also ensures that initializations are never undefined.

6.7 Nondeterministic choice operator

There are situations in the design of reactive systems where nondeterministic behaviors must be
modeled. Kind 2 offers a convenient binder of the form any { x: T | P(x) } which denotes
an arbitrary stream of values of type T satisfying the predicate P. In the expression above x is a
locally bound variable of Lustre type T, and P(x) is a Lustre boolean expression that typically,
but not necessarily, contains x. The expression P(x) may also contain any input, output, or
local variable that are in the scope of the any expression. The following example shows a
component using the any operator to define a local stream l of arbitrary odd values.

node N(y: int) returns (z:int);
(*@contract
assume "y is odd" y mod 2 = 1;
guarantee "z is even" z mod 2 = 0;

*)
var l: int;

let
l = any { x: int | x mod 2 = 1 };
z = y + l;

tel

In addition, the any operator can take any Lustre type as argument. For instance, the expression
any int is also accepted and denotes an arbitrary stream of values of type int.

A challenge for the user with the use of any expressions arises if the specified condition is
inconsistent, or more generally, unrealizable. In that case, the system model may be satisfied
by no execution trace. As a consequence, any property, even an inconsistent one, would be
trivially satisfied by the (inconsistent) system model. For instance, the condition of the any
operator in the node of the following example is inconsistent, and thus, there is no realization
of the system model. As a result, Kind 2 proves the property P1 valid.
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node N(y: int) returns (z: int);
var l: int;

let
l = any { x : int | x < 0 and x > 0 };
z = y + l;
check "P1" z > 0 and z < 0;

tel

This problem is mitigated by the possibility for the user to check that the predicate P(x) in
the any expression is realizable. This is possible because, for each any expression occurring in a
model, Kind 2 introduces an internal imported node whose contract restricts the values of the
returned output using the given predicate as a guarantee. The user can take advantage of this
fact to detect issues with the conditions of any expressions by enabling Kind 2’s functionality
that checks the realizability of contracts of imported nodes. When this functionality is enabled,
Kind 2 is able to detect the problem illustrated in the example above.

It is worth mentioning that Kind 2 does not consider the surrounding context when checking
the realizability of the introduced imported node. Because of this limitation, some checks may
fail even if, in a broader context where all constraints included in the model are considered, the
imported node would actually be considered realizable. To mitigate this issue, Kind 2 offers an
extended version of the binder, any { x: T | P(x) } assuming { Q }, that allows the user
to specify an assumption Q that should be taken into account in the realizability check. For
instance, the realizability check for the any expression in the following example would fail if the
assumption a <= b was not included.

node N(a: int) returns (z: int);
var b: int;
let
b = a + 10;
z = any { x: int | a <= x and x <= b } assuming { a<=b };
check z>=a+10 => z=b;

tel

Moreover, Kind 2 checks that any specified assumption in a any expression holds when model
checking the component.

6.8 Polymorphic nodes

In some situations, the user may want to express multiple variations of a node, where the only
differences between them lie in the input and output types. For example, consider different
interface type variations of the SafePre node, which returns the previous value of its single
input, but initialized with the first value of the input stream.
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node SafePreInt(x: int) returns (y: int);
let
y = x -> pre x;

tel

node SafePreBool(x: bool) returns (y: bool);
let
y = x -> pre x;

tel

node Top(x1: int; x2: bool) returns (y1: int; y2: bool);
let
y1 = SafePreInt(y1);
y2 = SafePreBool(y2);

tel

Kind 2 allows the user to express such variations more concisely through polymorphic nodes,
where the user includes a set of polymorphic type parameters in the node declaration and the
specific type arguments at the call site. Polymorphic type parameters are specified using angle
brackets as <ty1; ...; tyn> whereas call-site polymorphic arguments are specified using the
@ instantiation operator.

node SafePre<T>(x: T) returns (y: T);
let
y = x -> pre x;

tel

node Top(x1: int; x2: bool) returns (y1: int; y2: bool);
let
y1 = SafePre@<int>(y1);
y2 = SafePre@<bool>(y2);

tel

Note that SafePre can be called with any type, not just primitive types (e.g. SafePre@<[int,
bool]>(.) and SafePre@<[int, U]>(.), where U is itself a type parameter in the caller’s
declaration). Type arguments must be passed at the call site; inference of type arguments is
not yet supported.

Another example is a polymorphic node PairSwap, which takes a polymorphic pair tuple as
input and returns the corresponding swapped pair tuple as output.

node PairSwap<T; U>(x: [T, U]) returns (y: [U, T]);
let
y = {x.%1, x.%0};
tel

For a polymorphic node to be well-typed, it must be meaningful for any type instantiation
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(in other words, the type parameters are semantically universally quantified). This type of
polymorphism is called parametric polymorphism, and is also sometimes referred to as generics
in general-purpose programming languages.

To illustrate these semantics, even though the + operator is overloaded between int -> int
-> int and real -> real -> real, the following polymorphic node will give a type error, as
it cannot be instantiated with any type.

-- Generates a type error
node BadPolymorphicAdd<T>(x1, x2: T) returns (y: T);
let
y = x1 + x2;

tel

Note that polymorphic nodes can have check(.) statements just as non-polymorphic nodes.
When checking properties of polymorphic nodes at the top level, the type parameters are inter-
preted as abstract types.

6.9 Polymorphic contracts

In addition to polymorphic nodes, Kind 2 supports polymorphic contracts. The first way of
defining a polymorphic contract is by adding a type parameter to a contract definition. For
example, the Stutter contract states that the output y must either be equal to the input x or
the previous value of x.

contract Stutter<T> (x: T) returns (y: T) ;
let

guarantee
(y = x) or
(true -> (y = pre x));

tel

Then, the polymorphic contract can be included in a node using an import statement, where
the type arguments are provided at the import statement (analogously to a polymorphic node
declaration and node call).

contract Stutter<T> (x: T) returns (y: T) ;
let

guarantee
(y = x) or
(true -> (y = pre x));

tel

node N (x: int) returns (y: int);
(*@contract

(continues on next page)
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import Stutter@<int>(x) returns (y);
*)
let

y = pre x;
tel

node P<U>(x: U) returns (y: U);
(*@contract

import Stutter@<U>(x) returns (y);
*)
let

y = pre x;
tel

Above, node N instantiates the contract Stutter with type int. Also, node P demonstrates
using a polymorphic contract declaration with a polymorphic node.

Another way of specifying a polymorphic contract is by including it in the node declaration
with the (*@contract ... *) syntax.

node M<T>(x: int) returns (y: int);
(*@contract

guarantee
(y = x) or
(true -> (y = pre x));

*)
let

y = pre x;
tel
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7 Arrays

Experimental feature

7.1 Lustre arrays

Kind 2 supports the traditional Lustre V5 syntax for arrays.

7.1.1 Declarations

Array variables can be declared as global, local or as input/output of nodes. Arrays in Lustre
are always indexed by integers (type int in Lustre), and the type of an array variable is written
with the syntax t ^ <size> where t is a Lustre type and <size> is an integer literal or a
constant symbol.

The following

A : int ^ 3;

declares an array variable A of type array of size 3 whose elements are integers. The size of the
array can also be given by a defined constant.

const n = 3;
...
A : int ^ n;

This declaration is equivalent to the previous one for A.

An interesting feature of these arrays is the possibility for users to write generic nodes and
functions that are parametric in the size of the array. For instance one can write the following
node returns the last element of an array.

node last (const n: int; A: int ^ n) returns (x: int);
let
x = A[n-1];

tel

It takes as input the size of the array and the array itself. Note that the type of the input A
depends on the value of the first constant input n. In Lustre, calls to such nodes should of course
end up by having concrete values for n, this is however not the case in Kind 2 (see Extension
to unbounded arrays).

Arrays can be multidimensional, so a user can declare e.g. matrices with the following
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const n = 4;
const m = 5;
...

M1 : bool ^ n ^ m;
M2 : int ^ 3 ^ 3;

Here M1 is a matrix of size 4x5 whose elements are Boolean, and M2 is a square matrix of size
3x3 whose elements are integers.

Remark

M1 can also be viewed as an array of arrays of Booleans.

Kind 2 also allows one to nest datatypes, so it is possible to write arrays of records, records of
arrays, arrays of tuples, and so on.

type rational = { n: int; d: int };

rats: rational^array_size;
mm: [int, bool]^array_size;

In this example, rats is declared as an array of record elements and mm is an array of pairs.

7.1.2 Definitions

In the body of nodes or at the top-level, arrays can be defined with literals of the form

A = [2, 5, 7];

This defines an array A of size 3 whose elements are 2, 5 and 7. Another way to construct Lustre
arrays is to have each elements be the same value. This can be done with expressions of the
form <value> ^ <size>. For example the two following definitions are equivalent.

A = 2 ^ 3;
A = [2, 2, 2];

Arrays are indexed starting at 0 and the elements can be accessed using the selection operator
[ ]. For instance the result of the evaluation of the expression A[0] for the previously defined
array A is 2.

The selection operators can also be applied to multidimensional arrays. Given a matrix M defined
by

M = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]];
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then the expression M[1][2] is valid and evaluates to 6. The result of a single selection on an
n-dimensional array is an (n-1)-dimensional array. The result of M[2] is the array [7, 8, 9].

7.1.3 Unsupported features of Lustre V5

Kind 2 currently does not support the following features of Lustre V5:

• Array concatenation like [0, 1] | [2, 3, 4]
• Array slices like A[0..3], A[0..3 step 2], M[0..1][1..2] or M[0..1, 1..2]
• The operators are not homomorphically extended. For instance or has type bool -> bool

-> bool, given two arrays of Booleans A and B, the expression A or B will be rejected at
typing by Kind 2

• Node calls don’t have an homomorphic extension either

7.2 Extension to unbounded arrays

Kind 2 provides an extension of Lustre to express equational constraints between unbounded
arrays. This syntax extension allows users to inductively define arrays, give whole array defi-
nitions and allows to encode most of the other unsupported array features. This extension was
originally suggested by Esterel.

Remark

Here, by unbounded we mean whose size is an unbounded constant.

In addition, we also enriched the specification language of Kind 2 to support (universal and
existential) quantifiers, allowing one to effectively model parameterized system.

7.2.1 Whole array definitions

Equations in the body of nodes can now take the following forms

• A = <term> ; This equation defines the values of the array A to be the same as the values
of the array expression <term>.

• A[i] = <term(i)> ; This equation defines the values of all elements in the array A.
The index i has to be a symbol, it is bound locally to the equation and shadows all
other mentions of i. Index variables that appear on the left hand side of equations are
implicitly universally quantified. The right hand side of the equation, <term(i)> can
depend on this index. The meaning of the equation is that, for any integer i between 0
and the size of A, the value at position i is defined as the term <term(i)>.

Semantically, a whole array equation is equivalent to a quantified equation. Let A be an array
of size an integer constant n, then following equation is legal.
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A[i] = if i = 0 then 2 else B[i - 1] ;

It is equivalent to the formula � i � [0; n]. ( i = 0 � A[i] = 2 ) � ( i � 0 � A[i] = B[i-1] ).

Multidimensional arrays can also be redefined the same way. For instance the equation

M[i][j] = if i = j then 1 else 0 ;

defines M as the identity matrix

[[ 1 , 0 , 0 ,..., 0 ],
[ 0 , 1 , 0 ,..., 0 ],
[ 0 , 0 , 1 ,..., 0 ],
.................... ,
[ 1 , 0 , 0 ,..., 1 ]]

It is possible to write an equation of the form

M[i][i] = i;

but in this case the second index i shadows the first one, hence the definition is equivalent to
the following one where the indexes have been renamed.

M[j][i] = i;

7.2.2 Inductive definitions

One interesting feature of these equations is that we allow definitions of arrays inductively. For
instance it is possible to write an equation

A[i] = if i = 0 then 0 else A[i-1] ;

This is however not very exciting because this is the same as saying that A will contain only
zeros, but notice we allow the use of A in the right hand side.

Dependency analysis

Inductive definitions are allowed under the restriction that they should be well founded. For
instance, the equation

A[i] = A[i];

is not and will be rejected by Kind 2 the same way the equation x = x; is rejected. Of course
this restriction does not apply for array variables under a pre, so the equation A[i] = pre
A[i]; is allowed.
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In practice, Kind 2 will try to prove statically that the definitions are well-founded to ensure
the absence of dependency cycles. We only attempt to prove that definitions for an array A at
a given index i depends on on values of A at indexes strictly smaller than i.

For instance the following set of definitions is rejected because e.g. A[k] depends on A[k].

A[k] = B[k+1] + y;
B[k] = C[k-1] - 2;
C[k] = A[k] + k;

On the other hand this one will be accepted.

A[k] = B[k+1] + y;
B[k] = C[k-1] - 2;
C[k] = ( A[k-1] + B[k] ) * k ;

Because the order is fixed and that the checks are simple, it is possible that Kind 2 rejects
programs that are well defined (with respect to our semantic for whole array updates). It will
not, however, accept programs that are ill-defined.

For instance each of the following equations will be rejected.

A[i] = if i = 0 then 0 else if i = 1 then A[0] else A[i-1];

A[i] = if i = n then 0 else A[i+1];

A[i] = if i = 0 then 0 else A[0];

Examples

This section gives some examples of usage for inductive definitions and whole array updates as
a way to encode unsupported features and as way to encode complicated functions succinctly.

Sum of the elements in an array

The following node returns the sum of all elements in an array.

node sum (const n: int; A: int ^ n) returns (s: int);
var cumul: int ^ n;
let
cumul[i] = if i = 0 then A[0] else A[i] + cumul[i-1];
s = cumul[n-1];

tel
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We declare a local array cumul to store the cumulative sum (i.e. cumul[i] contains the sum
of elements in A up to index i) and the returned value of the node is the element stored in the
last position of cumul.

Note that this node is parametric in the size of the array.

Array slices

Array slices can be trivially implemented with the features presented above.

node slice (const n: int; A: int ^ n; const low: int; const up: int)
returns (B : int ^ (up-low));
let
B[i] = A[low + i];

tel

Homomorphic extensions

Encoding an homomorphic or on Boolean arrays is even simpler.

node or_array (const n: int; A, B : bool^n) returns (C: bool^n);
let
C[i] = A[i] or B[i];

tel

Defining a generic homomorphic extension of node calls is not possible because nodes are not
first order objects in Lustre.

Parameterized systems

It is possible to describe and check properties of parameterized systems. Contrary to the Lustre
compilers, Kind 2 does not require the constants used as array sizes to be instantiated with
actual values. In this case the properties are checked for any array sizes.

node slide (const n:int; s: int) returns(A: int^n);
let
A[i] = if i = 0 then s else (-1 -> pre A[i-1]);

--%PROPERTY n > 1 => (true -> A[1] = pre s);
tel

This node stores in an array A a sliding window over an integer stream s. It saves the values
taken by s up to n steps in the past, where n is the size of the array.
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Here the property says, that if the array A has at least two cells then its second value is the
previous value of s.

7.2.3 Quantifiers in specifications

To better support parameterized systems or systems with large arrays, we expose quantifiers for
use in the language of the specifications. Quantifiers can thus appear in properties, contracts
and assertions.

Universal quantification is written with:

forall ( <x : type>;+ ) P(<x>+)

where x are the quantified variables and type is their type. P is a formula or a predicate in
which the variable x can appear.

For example, the following

forall (i, j: int) 0 <= i and i < n and 0 <= j and j < n => M[i][j] = M[j][i]

is a formula that specifies that the matrix M is symmetric.

Remark

Existential quantification takes the same form except we use exists instead of
forall.

Quantifiers can be arbitrarily nested and alternated at the propositional level.

Example

The same parameterized system of a sliding window, slightly modified to express the property
that A contains in each of its cells, an uninitialized value (i.e. value -1), or one of the previous
values of the stream s.

node slide (const n:int; s: int) returns(ok: bool^n);
var A: int^n;
let
A[i] = if i = 0 then s else (-1 -> pre A[i-1]);
ok[i] = A[i] = -1 or A[i] = s or (false -> pre ok[i]);

--%PROPERTY forall (i: int) 0 <= i and i < n => ok[i];
tel
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7.2.4 Limitations

One major limitation that is present in the arrays of Kind 2 is that one cannot have node calls
in inductive array definitions whose parameters contain unbounded array indices.

For instance, it is currently not possible to write the following in Kind 2 where A and B are
arrays, n is a symbolic constant, and some_node takes values as inputs.

node some_node (x: int) returns (y: int);
...

A, B: int^n;
...

A[i] = some_node(B[i]);

Another limitation is that quantified variables cannot appear in the parameters of a node call.
These limitations do not apply if the call is to an inlinable function, which is currently defined
as a function that meets all the following criteria:

• It has a single output, and the output is defined by an equation.
• Either there is no proof obligation on its output (via a contract or a refinement type), or

the function is annotated as transparent.
• It does not include assert statements or array definitions.

7.2.5 Command line options

We provide different encodings of inductive array definitions in our internal representation of
the transition system. The command line interface exposes different options to control which
encoding is used. This is particularly relevant for SMT solvers that have built-in features,
whether it is support for the theory of arrays, or special options or annotations for quantifier
instantiation.

These options are summed up in the following table and described in more detail in the rest of
this section.

Option Description
–smt_arrays Use the builtin theory of arrays in solvers
–inline_arrays Instantiate quantifiers over array bounds in case they are statically known
–arrays_rec Define recursive functions for arrays (for cvc5)

The default encoding will use quantified formulas for inductive definitions and whole array
updates.

For example if we have
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A : int^6;
...
A[k] = x;

we will generate internally the constraint

� k: int. 0 <= k < 6 => (select A k) = x

These form of constraint are handled in an efficient way by cvc5 (thanks to finite model finding).

--smt_arrays

By default arrays are converted using ah-hoc selection functions to avoid stressing the theory
of arrays in the SMT solvers. This option tells Kind 2 to use the builtin theory of arrays of
the solvers instead. If you want to try it, it’s probably a good idea to use it in combination of
--smtlogic detect for better performances.

--inline_arrays

By default, Kind 2 will generate problems with quantifiers for arrays which should be useful
for problems with large arrays. This option tells Kind 2 to instantiate these quantifiers when it
can reasonably do so. Only cvc5 has a good support for this kind of quantification so you may
want to use this option with the other solvers.

The previous example

A : int^6;
...
A[k] = x;

will now be encoded by the constraint

(select A 0) = x � (select A 1) = x � (select A 2) = x � (select A 3) = x � (select A
4) = x � (select A 5) = x

--arrays_rec

This uses a special kind of encoding to tell cvc5 to treat quantified definitions of some uninter-
preted functions as recursive definitions.
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8 Machine Integers

Kind2 supports both signed and unsigned versions of C-style machine integers of width 8, 16,
32, and 64.

8.1 Declarations

Machine integer variables can be declared as global, local, or as input/ouput of nodes. Signed
machine integers are declared as type intN and unsigned machine integers are declared as type
uintN where N is the width (8, 16, 32, or 64).

The following

x : uint8;
y : int16;

declares a variable x of type unsigned machine integer of width 8, and variable y of type signed
machine integer of width 16.

8.2 Values

Machine integers values can be constructed using implicit conversion functions applied to integer
literals. The implicit conversion functions are of the form uintN for unsigned machine integers
and intN for signed machine integers.

The following

x = uint8 27;
y = int16 -5012;

defines x to have value 27, and y to have value -5012, given that x is a variable of type uint8
and y is a variable of type int16.

8.3 Semantics

Machine integers of width x represent binary numbers of size x. Signed machine integers are
represented using 2’s complement.

The bounds of machine integers are specified here for convenience:

uint8 : 0 to 255
uint16 : 0 to 65535

(continues on next page)

48



(continued from previous page)

uint32 : 0 to 4294967295
uint64 : 0 to 18446744073709551615
int8 : -128 to 127
int16 : -32768 to 32767
int32 : -2147483648 to 2147483647
int64 : -9223372036854775808 to 9223372036854775807

When the conversion functions are used for literals that are out of this range, they are converted
to a machine integer that is in range using the modulo operation, as in C. For instance, in the
following

x = uint8 256;
y = int16 32768;

x evaluates to 0 and y to -3268, given that x is a variable of type uint8 and y is a variable of
type int16.

Conversions are allowed between machine integers of different widths, as long as both types are
either signed or unsigned. Values remain unchanged when converted from a smaller to a larger
width; values are adjusted modulo the range of the destination type when converted from larger
to smaller width. The following code illustrates this.

a : int8;
b : int16;
c : uint16;
d : uint8;
a = int8 120;
b = int16 a; -- b == int16 120
c = uint16 300;
d = uint8 c; -- c == uint8 44

8.4 Operations

Kind2 allows the following operations over the machine integer types.

8.4.1 Arithmetic Operations

Addition (+), subtraction (-), multiplication (*), division (div), modulo (mod), and unary nega-
tion (-) are allowed on either signed or unsigned machine integers, and return a machine integer
with the same sign and same width as the input(s).

a, a1, a2 : uint8;
b : uint16;

(continues on next page)
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c : uint32;
d : uint64;
e, f : int8;
a1 = (uint8 5);
a2 = (uint8 22);
a = a1 + a2;
b = (uint16 20) * (uint16 200);
c = (uint32 500) div (uint32 5);
d = (uint64 25) mod (uint64 10);
e = (int8 -5) + (- (int8 10));
f = (int8 10) - (int8 -5);

8.4.2 Logical Operations

Conjunction (&&), disjunction (||), and negation (!) are performed in a bitwise fashion over
the binary equivalent of their machine integer inputs. Conjunction and disjunction are binary,
while negation is unary. All 3 operations return a machine integer that has the same sign and
same width as its input(s).

a, b, b1, b2, c : uint8;
a = (uint8 0) && (uint8 45); --a = (uint8 0)
b1 = (uint8 255);
b2 = (uint8 45);
b = b1 && b2; --b = (uint8 45)
c = !(uint8 0); --c = (uint8 255)

8.4.3 Shift Operations

Left shift (lsh) and right shift (rsh) operations are binary operations: the first input is either
signed or unsigned, the second input is unsigned, and the sign of the output matches that of
the first input; both inputs and the output have the same width.

Right shifting when the first operand is signed, results in an arithmetic right shift, where the
bit shifted in matches the sign bit.

A left shift is equivalent to multiplication by 2, and a right shift is equivalent to division by 2,
as long as the result can fit into the machine integer of the same width. In other words, the left
shift operator shifts towards the most-significant bit and the right shift operator shifts towards
the least-significant bit.

a, b, c : bool;
a = (uint8 0) lsh (uint8 10) = (uint8 0); --true
b = (uint8 255) rsh (uint8 12) = (uint8 255); --true
c = (int8 -1) lsh (uint8 1) = (int8 -2); --true
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8.4.4 Comparison Operations

The following comparison operations are all binary: >, <, >=, <=, =. They input machine integers
of the same size and sign, and output a boolean value.

a : bool;
a = (int8 -12) < (int8 12); --true

8.5 Limitations

Currently, only SMT solvers cvc5 and Z3 support logics that allows the usage of integers and
machine integers together. To use any of the other supported SMT solvers, the Lustre input
must contain only machine integers.

Moreover, the IC3QE engine requires either cvc5 or Z3, and the IC3IA engine requires MathSAT,
cvc5, or Z3, to run on models with machine integers. If these requirements are not satisfied,
Kind 2 runs with the corresponding IC3 model checking engine disabled.
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9 Refinement Types

Kind 2 supports refinement types. A refinement type is comprised of two components: (i) a
base type, and (ii) a predicate that restricts the members of the base type.

9.1 Declarations

Refinement types have syntax of the form subtype { var: base_type | P(var) }.

For example, type Nat = subtype { x: int | x >= 0 } declares a refinement type Nat over
the base type int, where the values of Nat are all the nonnegative integers. When assigning a
refinement type to a node input, output, or local variable, Kind 2 also supports an alternative,
more concise syntax of the form var: base_type | P(var).

For example,

node N(x: int | x >= 0) returns (y: int | y >= 0);

denotes the interface of a node N which takes a stream of natural numbers x as input and returns
a stream of natural numbers y as output. The above example can be equivalently expressed
using the full syntax:

node N(x: subtype { n: int | n >= 0 }) returns (y: subtype { n: int | y >= 0});

The base type being refined can be any type, not just a primitive type. For example,

type Nat = subtype { x: int | x >= 0 };
type LessThan100 = { x: Nat | x < 100 };

declares a refinement type LessThan100 whose base type Nat is itself a refinement type. Note
that we can still recursively chase base types until we reach a primitive type. In this case,
LessThan100’s recursively chased primitive base type is int.

Additionally, refinement types can be components of more complicated types:

const n: int;
type Nat = subtype { x: int | x >= 0 };
type NatArray = Nat^n;

Above, we declare a type NatArray, an array of natural numbers.

Since Lustre is a declarative language, there is no conceptual ordering between variable dec-
larations (input, output, and local variables). A consequence of this is that refinement type
predicates can contain variables that are defined before or after the current variable in the
input file. For example, the following is legal.
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node N() returns (x: | x <= y; y | y = x + 10);

Above, the predicate in x’s type references y, which is allowed even though y comes after x in
the list of node outputs.

9.2 Semantics

Refinement types on input variables represent assumptions, while refinement types on locals
and node outputs represent proof obligations.

Consider the following example:

type Even = subtype { n: int | n mod 2 = 0 };
type Odd = subtype { n: int | n mod 2 = 1 };

node M(x1: Even; x2: Odd) returns (y: Odd);
let

y = x1 + x2;
--%MAIN;

tel

Kind2 will attempt to prove that node M’s output y respects type Odd while assuming that input
x1 has type Even and input x2 has type Odd. More intuitively, Kind 2 will prove that adding
an even and an odd integer results in an odd integer. Conceptually, the refinement types can
be viewed as an augmentation of M’s contract as follows:

node M(x1: int; x2: int) returns (y: int);
(*@contract

assume x1 mod 2 = 0;
assume x2 mod 2 = 1;
guarantee y mod 2 = 1;

*)
let

y = x1 + x2;
--%MAIN;

tel

If an output variable with a refinement type is left undefined, Kind 2 will specify that the value
ranges over a recursively chased base type.

node M() returns (y: Nat | y < 100);
let
tel

In the above example, M’s return value y will range over all integers, not just natural numbers
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less than 100. This is because y is an output variable, and therefore its refinement type is
viewed as a proof obligation. In this case, Kind 2 will report that y violates its refinement type.

9.3 Operations

From the point of view of primitive operations (e.g. +, -, pre) and node calls, variables with
refinement types can syntactically be used anywhere that variables with the corresponding base
type can be used, and vice versa. For example, if x has type Nat, y has type Nat, and z has
type int, then x+y, z+x, and y+z (among other combinations) are all legal. Further, if node M
has a single parameter of type Nat, then the node call M(z) is legal, and if node N has a single
parameter of type int, then the node call M(x) is legal.

While all of the above are syntactically valid, Kind 2 may still fail type-related proof obligations.
For example, in the node call M(z) (where z has type int and M takes a single parameter of
type Nat), M’s typing assumption on its input will be violated if z can be negative.

9.4 Realizability

Because refinement types are essentially contract augmentations, it is possible to specify re-
finement types that are unrealizable. In other words, it is possible to specify refinement type
contraints that are unimplementable (impossible to satisfy with any implementation).

As an example, the following node interface is unrealizable:

node M(x: int) returns (y: int | 0 <= y and y <= x);

Output variable y’s refinement type states that y must be between 0 and x. However, if input
x is negative, then no value for y will satisfy its type.

One way to make the above interface realizable is to add a refinement type for x:

node M(x: int | x >= 0) returns (y: int | 0 <= y and y <= x);

To check the realizability refinement types, one can call kind2 <filename> --enable
CONTRACTCK. Kind 2 performs three types of realizability checks:

1. Node and imported node contracts, including type information
2. Node environments, i.e., checking that the set of assumptions on a node’s input is realizable
3. Individual refinement types, i.e., that a global refinement type declaration is realizable

You can specify a particular node or function to analyze using --lus_main <node_name>, and
a specific refinement type using --lus_main_type <type_name>.
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9.5 Restrictions

Definitions of global constants with refinement types (as shown in the following example) are
not supported:

const n: subtype { x : int | x >= 0 } = 3;

However, declarations of free global constants (a.k.a system parameters) are supported:

const n: subtype { x : int | x >= 0 };
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10 Enumeration types

type my_enum = enum { A, B, C };
node n (x : my_enum, ...) ...

Enumerated datatypes are encoded as subranges so that solvers handle arithmetic constraints
only. This also allows to use the already present quantifier instantiation techniques in Kind 2.

10.1 N-way merge

As in Lustre V6, merges can also be performed on a clock of a user defined enumerated datatype.

merge c
(A -> x when A(c))
(B -> w + 1 when B(c));

Arguments of merge have to be sampled with the correct clock. Clock expressions for merge
can be just a clock identifier or its negation or A(c) which is a stream that is true whenever c
= A.

Merging on a Boolean clock can be done with two equivalent syntaxes:

merge(c; a when c; b when not c);

merge c
(true -> a when c)
(false -> b when not c);
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11 History Types

In order to improve the expressivity of Kind 2’s specification language, the tool provides a built-
in type constructor that allows users to refer to an unbounded number of previous values of a
stream. Specifically, the unary type constructor history(x), that takes a stream x of arbitrary
type T as its single argument, represents the set of all streams z of values of type T such that
at any time t >= 0, there exists a k in the interval [0, t] such that z(t) = x(k).

For instance, given a node with an input stream x and an output stream y, both with the same
type, the property the current value of stream y equals the current value or a previous value of
a stream x plus one can’t be expressed in Lustre. However, using the type constructor history,
one can easily express the property as exists (z: history(x)) y=z+1.

Notice that history(x) denotes a refinement type, suggesting its applicability wherever a type
is expected in the model. However, at present, the implementation restricts the use of the type
constructor history to the type of a quantified variable. We plan to lift this restriction in
future versions of Kind 2.
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12 Abstract Types

Kind 2 supports Lustre’s abstract types, which are user-declared types without definitions.
Abstract types are declared with the syntax type <name>. Below is a simple Lustre file that
declares an identity node that takes an input of (abstract) type T and returns an output of type
T equal to the input.

type T;
function id_T (x: T) returns (y: T);
let

y = x;
tel

In Kind 2, all abstract types have infinite domains. Therefore, to maintain soundness, quantifi-
cation over variables with abstract types is not allowed. For example, the following code block
is rejected by Kind 2, since the contract assumption would constrain type T to have a finite
domain.

type T;
function id_T (x: T) returns (y: T);
(*@contract
assume forall (x: T) (forall (y: T) x = y);
*)
let

y = x;
tel
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13 Polymorphic User Types

Kind 2 supports polymorphic user types, which are user-defined types that contain type
parameters. An example is a polymorphic user-defined Pair type, declared as type Pair<T;
U> = [T, U];.

A polymorphic user-defined type T is instantiated with T<...> syntax (analogous to polymor-
phic nodes and node calls) as in the following examples.

type Pair<T; U> = [T, U];

node SwapIntBool(x: Pair<int; bool>) returns (y: Pair <bool; int>)
let

y = {x.%1, x.%0};
tel

node SwapGeneric<T; U>(x: Pair<T; U>) returns (y: Pair <U; T>)
let

y = {x.%1, x.%0};
tel

In other words, Pair (or any other user-defined polymorphic type) can be viewed as as a type
constructor which takes types as inputs and returns a type.
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14 JSON / XML Output

Kind 2 can output its results in two structured formats: JSON and XML. They facilite the
processing of Kind 2’s results by external tools. The next sections describe each of these output
formats in detail.

14.1 JSON format

The JSON output is activated by running Kind 2 with the -json option. Its syntax is fully
specified by the JSON schema available in the schemas/kind2-output.json file.

The root element of a JSON output document is either a Log Object if Kind 2 terminates early
with an error, or an array of Results Objects if Kind 2 succeeds generating some result. Every
Results Object (including Log Object) is identified and distinguished from other Results objects
by a property of type string called objectType.

In a successful execution, a Kind2 Options Object specifies the options used by the tool, and
any Log message is added to the array as it is written. When Kind 2 is run as an interpreter,
the array includes one Execution Object that contains a description of the computed values for
the output and state variables. Otherwise, Kind 2 works as a model checker and performs a
series of analyses. The beginning of a main analysis is indicated by an AnalysisStart Object,
and its end by an AnalysisStop Object. Within these delimiters, a Property Object describes
the result for a particular property of the input model under the parameters of the analysis.
When the verbose mode is enabled, statistics and progress info of the analysis is also recorded
along through Stat and Progress objects.

Similarly to main analyses, when a post-analysis is enabled, the beginning of the post-analysis
is indicated by an PostAnalysisStart Object, and its end by an PostAnalysisEnd Object.

14.1.1 Log Object

A Log object records an informative message from the tool. The value of its objectType
property is log. The list of properties of a Log object are:

Key Type Description
level string A level that gives a rough guide of the importance of the message.

Can be fatal, error, warn, note, info, debug, or trace.
source string The name of the Kind 2 module which wrote the log.
file string Associated input file, if any.
line integer Associated line in the input file, if any.
column integer Associated column in the input file, if any.
value string The log message.
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14.1.2 Results Objects

A Result object can be one of the following objects: a Log Object, a Kind2 Options Object,
an AnalysisStart Object, an AnalysisStop Object, a Property Object, a Stat Object, a Progress
Object, a PostAnalysisStart Object, or a PostAnalysisEnd Object.

14.1.3 Kind2 Options Object

A Kind2 options object describes the options used by the tool in the current execution. The
value of its objectType property is kind2Options. The list of properties of a Kind2 options
object are:

Key Type Description
enabled array List of Kind 2 module names that are enabled.
timeout number The wallclock timeout used for all the analyses.
bmcMax integer Maximal number of iterations for BMC and K-induction.
compositional boolean Whether compositional analysis is enabled or not.
modular boolean Whether modular analysis is enabled or not.

14.1.4 AnalysisStart Object

An AnalysisStart object indicates the beginning of a main analysis. The value of its
objectType property is analysisStart. The list of properties of an AnalysisStart object
are:

Key Type Description
top string Name of the current top-level component.
concrete array Names of the subcomponents whose implementation is used in the

analysis.
abstract array Names of the subcomponents whose contract is used in the analysis.
assumptions array Array of pairs (name of subcomponent, number of considered invari-

ants).

14.1.5 AnalysisStop Object

An AnalysisStop object indicates the end of a main analysis. The value of its objectType
property is analysisStop. No properties are associated.
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14.1.6 Property Object

A Property object describes the result for a particular property of the input model. The result
should be considered in the context of the analysis in which the property object is contained.
The value of its objectType property is property. The list of properties of an AnalysisStart
object are:

Key Type Description
name string Property identifier or description.
scope string Name of the component where the property was analyzed.
line integer Associated line in the input file, if any.
column integer Associated column in the input file, if any.
source string Origin of the property. Can be Assumption if it comes from

an assumption check, Guarantee if it comes from the check
of a guarantee, Ensure if it comes from a check of a require-
ensure clause in a contract mode, OneModeActive if it comes
from an exhaustiveness check of the state space covered by
the modes of a contract, and PropAnnot if it comes from the
check of a property annotation.

runtime object The runtime of the analysis (in seconds), and whether the
timeout expired

k integer The value of k in a k-inductive proof, if any.
trueFor integer The largest value of k for which the property was proved to

be true, if any.
answer object The source of the answer, and the result value of the check.

The result can be valid, falsifiable, or unknown.
counterExample object Counterexample to the property satisfaction (only available

when answer is falsifiable). It describes a sequence of
values for each stream that leads the system to the violation
of the property. It also gives the list of contract modes that
are active at each step, if any.
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14.1.7 Stat Object

An Stat object provides statistics info about the current analysis. The value of its objectType
property is stat. The list of properties of a Stat object are:

Key Type Description
source string Name of the Kind 2 module which reported the info.
sections array List of statSection objects, each of them with a section name and

a list of statItem objects. Each statItem has a name, a type, and
a value. See schemas/kind2-output.json for further details.

14.1.8 Progress Object

An Progress object reports the current value of k for k-inductive-based analyses. The value of
its objectType property is progress. The list of properties of a Progress object are:

Key Type Description
source string Name of the k-inductive-based analysis.
k integer Value for k.

14.1.9 PostAnalysisStart Object

An PostAnalysisStart object indicates the beginning of a post-analysis. The value of its
objectType property is postAnalysisStart. The list of properties of an PostAnalysisStart
object are:

Key Type Description
name string Name of the post-analysis

The post-analyses currently available are Test Generation (testgen), Proof Certificates
(certification), Contract Generation (contractgen), Compilation to Rust (rustgen), In-
variant Printing (invprint), and Inductive Validity Core (ivc).
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14.1.10 PostAnalysisEnd Object

An PostAnalysisEnd object indicates the end of a post-analysis. The value of its objectType
property is postAnalysisEnd. No properties are associated.

14.1.11 Execution Object

An Execution object describes the sequences of values for the output and state variables of
an input model computed from its simulation (see the interpreter mode). The value of its
objectType property is execution. It only has one object property called trace which follows
the same format than property counterExample in Property Object.

14.1.12 ModelElementSet Object

A ModelElementSet object describes a set of model elements (a model element can be an
equation, a node call, an assumption, a guarantee, etc). It is used to describe a core that we can
get from an Inductive Validity Core (ivc) or Minimal Cut Set (mcs) analysis. The result should
be considered in the context of the analysis or post-analysis in which the ModelElementSet
object is contained. The value of its objectType property is modelElementSet.

Key Type Description
class string Class of the core. Can be must, must complement, ivc, ivc

complement, mcs or mcs complement.
size integer Number of model elements in the core.
property string The property associated with the core. If all properties are

considered, this field is missing.
runtime object The runtime for computing the core (in seconds).
nodes array For each node, contains an object that enumerates the model

elements of the node that are part of the core.
counterExample object Counterexample to the property satisfaction (only when rele-

vant, that is, when class is mcs or mcs complement). See the
property object for more info.

14.2 XML format

The XML output is activated by running Kind 2 with the -xml option. Its syntax is fully
specified by the XML schema available in the schemas/kind2-output.xsd file.

The root element of a XML output document is either a Log Element if Kind 2 terminates early
with an error, or a Results Element if Kind 2 succeeds generating some result.
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14.2.1 Log Element

A Log element is a simple element that records an informative message from the tool. The list
of attributes of a Log element are:

At-
tribute

Base Type Description

class xs:string A level that gives a rough guide of the importance of the mes-
sage. Can be fatal, error, warn, note, info, debug, or trace.

source xs:string The name of the Kind 2 module which wrote the log.
line xs:integer Associated line in the input file, if any.
column xs:integer Associated column in the input file, if any.

14.2.2 Results Element

A Results element is a sequence of zero or more of the following elements: a Log Element,
an AnalysisStart Element, an AnalysisStop Element, a Property Element, a Stat Element, a
Progress Element, a PostAnalysisStart Element, a PostAnalysisEnd Element, or an Execution
Element.

The list of attributes of a Results element are:

Attribute Base Type Description
enabled xs:string List of comma-separated Kind 2 enabled module names.
timeout xs:decimal The wallclock timeout used for all the analyses.
bmc_max xs:integer Maximal number of iterations for BMC and K-induction.
compositional xs:boolean Whether compositional analysis is enabled or not.
modular xs:boolean Whether modular analysis is enabled or not.
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14.2.3 AnalysisStart Element

An AnalysisStart element is an empty element that indicates the beginning of a main analysis.
The list of attributes of an AnalysisStart element are:

Attribute Base Type Description
top xs:string Name of the current top-level component.
concrete xs:string Names of the subcomponents whose implementation is used

in the analysis (comma-separated list).
abstract xs:string Names of the subcomponents whose contract is used in the

analysis (comma-separated list).
assumptions xs:string Comma-separated list of pairs (subcomponent name, num-

ber of considered invariants).

14.2.4 AnalysisStop Element

An AnalysisStop element is an empty element that indicates the end of a main analysis. No
attributes.

14.2.5 Property Element

A Property element describes the result for a particular property of the input model. The result
should be considered in the context of the analysis in which the property element is contained.
The list of attributes of a Property element are:

Attribute Base Type Description
name xs:string Property identifier or description.
scope xs:string Name of the component where the property was analyzed.
file xs:string Associated input file, if any.
line xs:integer Associated line in the input file, if any.
column xs:integer Associated column in the input file, if any.
source xs:string Origin of the property. Can be Assumption if it comes from an

assumption check, Guarantee if it comes from the check of a guar-
antee, Ensure if it comes from a check of an ensure clause in a
contract mode, OneModeActive if it comes from an exhaustiveness
check of the state space covered by the modes of a contract, and
PropAnnot if it comes from the check of a property annotation.

A Property element contains one Answer element, which includes the result for the property
check (valid, falsifiable, or unknown), and identifies the Kind 2 module responsible for the
answer. If the result is valid, or falsifiable, it also contains a Runtime element, which
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reports the runtime of the analysis (in seconds), and whether the timeout expired or not. If
the result is valid, a K element gives the value of k for which the property was proved valid. If
the result is falsifiable, a Counterexample element describes a sequence of values for each
stream that leads the system to the violation of the property. It also gives the list of contract
modes that are active at each step, if any. If the result is unknown, the Property element may
contain a TrueFor element specifying the largest value of k for which the property was proved
to be true.

14.2.6 Stat Element

An Stat element provides statistics info about the current analysis. It has only one attribute of
type xs:string, source, which is the name of the Kind 2 module which reported the piece of
information. Its content consists in one or more Section elements. Each section has one name
element, and one or more item elements. Each item element has one name element, and either
a value element or a valuelist element. A valuelist has one or more value elements, and
each value element has a type attribute (currently int or float), and its content is the actual
value.

14.2.7 Progress Element

A Progress element is a simple element that reports the current value of k for a k-inductive-
based analysis. It has only one attribute of type xs:string, source, which is the name of the
k-inductive-based analysis.

14.2.8 PostAnalysisStart Element

An PostAnalysisStart element is an empty element that indicates the beginning of a post-
analysis. It has only one attribute of type xs:string, the name of the post-analysis. The post-
analyses currently available are Test Generation (testgen), Proof Certificates (certification),
Contract Generation (contractgen), Compilation to Rust (rustgen), Invariant Printing
(invprint), and Inductive Validity Core (ivc).

14.2.9 PostAnalysisEnd Element

An PostAnalysisEnd element is an empty element that indicates the end of a post-analysis.
No attributes.
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14.2.10 Execution Element

An Execution element describes the sequences of values for the output and state variables of
an input model computed from the simulation of its execustion (see the interpreter mode).

14.2.11 ModelElementSet Element

A ModelElementSet element describes a set of model elements (a model element can be an
equation, a node call, an assumption, a guarantee, etc). It is used to describe a core that we can
get from an Inductive Validity Core (ivc) or Minimal Cut Set (mcs) analysis. The result should
be considered in the context of the analysis or post-analysis in which the ModelElementSet
element is contained. The list of attributes of a ModelElementSet element are:

Attribute Base
Type

Description

class string Class of the core. Can be must, must complement, ivc, ivc
complement, mcs or mcs complement.

size integer Number of model elements in the core.
property string The property associated with the core. If all properties are con-

sidered, this attribute is missing.

A ModelElementSet element contains one Runtime element, which indicates the runtime for
computing the core. It also contains a sequence of Node elements, each one enumerating the
model elements in that node that are part of the core. When relevant, it can also contain a
Counterexample element (see the Property element for more info).
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15 Exit codes

Since version 1.9.0, Kind 2 returns the standard exit code 0 for success, and a non-zero exit code
to indicate an error, or an unsuccessful analysis result. To force Kind 2 to use only non-zero exit
codes for errors, pass the option --exit_code_mode only_errors. The precise meaning of the
exit codes are described in section Code Convention. For information on the old convention,
see section Former Convention.

15.1 Code Convention

With the default settings, Kind 2 performs a single, monolithic analysis of the main node. If
Kind 2 proves all invariant properties valid and all reachability properties reachable, then it
returns (exit code) 0. If no properties are disproven, but some properties could not be proven
(e.g. due to a timeout), Kind 2 returns 30. When Kind 2 disproves one or more properties, it
returns 40.

In modular mode, the properties of all nodes are checked bottom-up. Moreover, when composi-
tional analysis is enabled too, the same node may be analyzed several times with different levels
of abstraction (see section Refinement in compositional and modular analyses for details). In
this case, Kind 2 returns 40 if one or more properties were disproven in any analysis. It returns
30 if no properties were disproven, but some nodes were not analyzed (e.g. due to a timeout)
or some properties could not be proven. It returns 0 if all properties were proven for all nodes
in every analysis.

When contracts of imported nodes are checked for realizability, Kind 2 also reports an exit
status following a similar convention. If all the contracts are proven realizable, it returns 0. If
some contract is proven unrealizable, it returns 40. When no contract is proven unrealizable,
but some contract could not be proven realizable, it returns 30.

If Kind 2 detects a general error, it returns 1. When the error is related to an incorrect
command-line argument, it returns 2. If Kind 2 detects a parse error, it returns 3. If Kind
2 cannot find an SMT solver on the PATH, it returns 4. When an unknown or unsupported
version of an SMT solver is detected, it returns 5.

15.2 Former Convention

Version 1.8.0 and earlier were not following the POSIX convention of returning 0 for success.
When all properties were proven, Kind 2 returned 20. If some property was disproven, it
returned 10. If no properties were disproven, but some result was unknown, it returned 0.
Moreover, Kind 2 returned 2 for any error.
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16 Contract Semantics

16.1 Assume-guarantee contracts

This section discusses the semantics of contracts, and in particular modes, in Kind 2. For details
regarding the syntax, please see the Contracts section.

An assume-guarantee contract (A,G) for a node n is a set of assumptions A and a set of guar-
antees G. Assumptions describe how n must be used, while guarantees specify how n behaves.

More formally, n respects its contract (A,G) if all of its executions satisfy the temporal LTL
formula

□A ⇒ □G

That is, if the assumptions always hold then the guarantees hold. Contracts are interesting
when a node top calls a node sub, where sub has a contract (A,G).

From the point of view of sub, a contract ({a_1, ..., a_n}, {g_1, ..., g_m}) represents
the same verification challenge as if sub had been written

node sub (...) returns (...) ;
let
...
assert a_1 ;
...
assert a_n ;
--%PROPERTY g_1 ;
...
--%PROPERTY g_m ;

tel

The guarantees must be invariant of sub when the assumptions are forced.

For the caller however, the call sub(<params>) is legal if and only if the assumptions of sub
are invariants of top at call-site. The verification challenge for top is therefore the same as

node top (...) returns (...) ;
let
... sub(<params>) ...
--%PROPERTY a_1(<call_site>) ;
...
--%PROPERTY a_n(<call_site>) ;

tel
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16.2 Modes

Kind 2 augments traditional assume-guarantee contracts with the notion of mode. A mode
(R,E) is a set R or requires and a set E of ensures. A Kind 2 contract is therefore a triplet
(A,G,M) where M is a set of modes. If M is empty then the semantics of the contract is exactly
that of an assume-guarantee contract.

16.2.1 Semantics

A mode represents a situation / reaction implication. A contract (A,G,M) can be re-written as
an assume-guarantee contract (A,G') where

G′ = G ∪ {
∧
i

ri ⇒
∧
i

ei | ({ri}, {ei}) ∈ M}

For instance, a (linear) contract for non-linear multiplication could be

node abs (in: real) returns (res: real) ;
let res = if in < 0.0 then - in else in ; tel

node times (lhs, rhs: real) returns (res: real) ;
(*@contract

mode absorbing (
require lhs = 0.0 or rhs = 0.0 ;
ensure res = 0.0 ;

) ;
mode lhs_neutral (
require not absorbing ;
require abs(lhs) = 1.0 ;
ensure abs(res) = abs(rhs) ;

) ;
mode rhs_neutral (
require not absorbing ;
require abs(rhs) = 1.0 ;
ensure abs(res) = abs(lhs) ;

) ;
mode positive (
require (
rhs > 0.0 and lhs > 0.0

) or (
rhs < 0.0 and lhs < 0.0

) ;
ensure res > 0.0 ;

) ;
mode pos_neg (

(continues on next page)
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require (
rhs > 0.0 and lhs < 0.0

) or (
rhs < 0.0 and lhs > 0.0

) ;
ensure res < 0.0 ;

) ;
*)
let
res = lhs * rhs ;

tel

Motivation: modes were introduced in the contract language of Kind 2 to account for the
fact that most requirements found in specification documents are actually implications between
a situation and a behavior. In a traditional assume-guarantee contract, such requirements
have to be written as situation => behavior guarantees. We find this cumbersome, error-
prone, but most importantly we think some information is lost in this encoding. Modes make
writing specification more straightforward and user-friendly, and allow Kind 2 to keep the mode
information around to

• improve feedback for counterexamples,
• generate mode-based test-cases, and
• adopt a defensive approach to guard against typos and specification oversights to a certain

extent. This defensive approach is discussed in the next section.

16.2.2 Defensive checks

Conceptually modes correspond to different situations triggering different behaviors for a node.
Kind 2 is defensive in the sense that when a contract has at least one mode, it will check that
the modes account for all situations the assumptions allow before trying to prove the node
respects its contract.

More formally, consider a node n with contract

(A, G, {(Ri, Ei)})

The defensive check consists in checking that the disjunction of the requires of each mode

one_mode_active =
∨
i

(
∧
j

rij)

is an invariant for the system

A ∧ G ∧ (
∧

ri ⇒
∧

ei)
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If one_mode_active is indeed invariant, it means that as long as

• the assumptions are respected, and
• the node is correct w.r.t. its contract then at least one mode is active at all time.

Kind 2 follows this defensive approach. If a mode is missing, or a requirement is more restrictive
than it should be then Kind 2 will detect the modes that are not exhaustive and provide a
counterexample.

This defensive approach is not as constraining as it first appears. If one wants to leave some
situation unspecified on purpose, it is enough to add to the current set of (non-exhaustive)
modes a mode like

mode base_case (
require true ;

) ;

which explicitly accounts for, and hence documents, the missing cases.

In addition, Kind 2 checks that all modes are reachable in the system. In other words, Kind 2
also checks that for each mode there exists a reachable state satisfying the conjunction of its
requires. This lets you know whether the mode implication is vacuously true or not.

When the node associated to the contract has a body (it is not imported), the check will be
performed twice. First, considering only the information of the contract. Then, considering the
equations of the body too.

Notice that when running Kind 2 in modular mode, the reachability check is performed locally to
a node without taking call contexts into account; only the specified assumptions are considered.

You can disable this check by passing --check_nonvacuity false to Kind 2, or by suppressing
all reachability checks (--check_reach false).
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17 Post Analysis Treatments

Post-analysis treatments are flag-activated Kind 2 features that are not directly related to
verification. The current post-analysis treatments available are

• certification,
• compilation to Rust,
• test generation,
• contract generation,
• assumption generation,
• invariant printing, and
• inductive validity core generation

All of them are deactivated by default. Post-analysis treatments run on the last analysis of a
system. It is defined as the last analysis performed by Kind 2 on a given system. With the
default settings, Kind 2 performs a single, monolithic analysis of the top node. In this case, the
last analysis is this unique analysis.

This behavior is changed by the compositional flag. For example, say Kind 2 is asked to
analyze node top calling two subnodes sub_1 and sub_2, in compositional mode. Say also
sub_1 and sub_2 have contracts, and that refinement is possible. In this situation, Kind 2 will
analyze top by abstracting its two subnodes. Assume for now that this analysis concludes the
system is safe. Kind 2 has nothing left to do on top, so this compositional analysis is the last
analysis of top, Kind 2 will run the post-analysis treatments. Assume now that this purely
compositional analysis discovers a counterexample. Since refinement is possible, Kind 2 will
refine sub_1 (and/or sub_2) and start a new analysis. Hence, the first, purely compositional
analysis is not the last analysis of top. The analysis where sub_1 and sub_2 are refined is the
last analysis of top regardless of its outcome (assuming no other refinement is possible).

Long story short, the last analysis of a system is either the first analysis allowing to prove the
system safe, or the analysis where all refineable systems have been refined.

The modular flag forces Kind 2 to apply whatever analysis / treatment the rest of the flags
specify to all the nodes of the system, bottom-up. Post-analysis treatments respect this behavior
and will run on the last analysis of each node.

17.1 Prerequisites

Some treatments can fail (which results in a warning) because some conditions were not met
by the system and/or the last analysis. The prerequisites for each treatment are:
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Treatment Conditions Notes
certification last analysis proved the system safe will fail if node is

partially defined
compilation to
Rust
test generation system has a contract with more than one mode

and the last analysis proved the system safe
contract genera-
tion

experimental

assumption gen-
eration

last analysis falsified some property generates non-
temporal con-
straints

invariant printing
inductive validity
core generation

last analysis proved the system safe
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18 Test Generation

Disclaimer: Test generation is, as of Kind 2 1.0, still a rather experimental feature.
In particular, it works only for models whose nodes have inputs and outputs of simple
type (int, real, bool, and enum), not structured type (record, tuple, or array). There
is a lot of room for improvement and the Kind 2 team welcomes feedback / bug
reports.

Most test generation techniques analyze the syntax of the model they run on to generate test
cases satisfying some coverage criteria. Kind 2 does not follow this approach but instead gen-
erates tests based on the specification, more precisely the modes of the specification.

Kind 2’s test generation was developed in a context where the actual implementation of the
components is outsourced. That is, a model of the system is written in-house based on some
specification. The model is then verified correct with respect to its specification, using Kind 2 of
course, before the specification is given to external sub-contractors that will eventually produce
some binaries but will not give access to their source code. At this point, there is a need to
test these binaries in-house.

In this context, syntactic test generation is arguably not appropriate as it would be based on
the syntax of the model, not that of the actual source code of the binaries. There is no reason
to believe any connection between the two. Now, the only thing we know of the binaries is that
they are supposed to verify the specification. For this reason, Kind 2’s test generation ignores
the syntax of the input model and instead builds on contracts (see Contract Semantics), and
more precisely on the notion on mode.

18.1 Combinations of modes as abstractions

Modes specify behaviors specific to a situation in a contract, and can be seen as abstractions
of the states allowed by the assumptions of the contract. Note that because of the mode
exhaustiveness check, there is always at least one mode active in any reachable state.

One can explore, starting from the initial states, the mode that can be activated up to some
depth. For example, consider the following stopwatch system:

contract stopwatchSpec ( tgl, rst : bool ) returns ( c : int ) ;
let
var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;
assume not (rst and tgl) ;
guarantee c >= 0 ;
mode resetting ( require rst ; ensure c = 0 ; ) ;
mode running (
require not rst ; require on ; ensure c = (1 -> pre c + 1) ;

) ;
(continues on next page)
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mode stopped (
require not rst ; require not on ; ensure c = (0 -> pre c) ;

) ;
tel

node previous ( x : int ) returns ( y : int ) ;
let
y = 0 -> pre x ;

tel

node stopwatch ( toggle, reset : bool ) returns ( count : int ) ;
(*@contract
import stopwatchSpec ( toggle, reset ) returns ( count ) ;

*)
var running : bool ;
let
running = (false -> pre running) <> toggle ;
count = if reset then 0 else
if running then previous(count) + 1 else previous(count) ;

tel

It seems that any of the three modes from the contract can be active at any point, since their
activation only depends on the values of the inputs. We can ask Kind 2 to generate the graph
of mode paths up to some depth (5 here):

kind2 --testgen true --testgen_len 5 stopwatch.lus

This will generate the following graph (and a lot of other files we will discuss below but omit
for now):
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Fig. 1: Stopwatch DAG

The graph confirms our understanding of the specification, each mode can be activated at any
time. Say now we made a mistake on the assumption:

assume not (rst or tgl) ;

It is now illegal to reset or start the stopwatch. The graph is generated very quickly as with
this assumption the system cannot do anything:
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Fig. 2: Stopwatch mistake DAG

N.B. In this simple system, only one mode could be active at a time. This is not the case in
general. See for example the mode graphs for the mode logic or the full model of the Transport
Class Model (TCM) case study.
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18.2 Generating test cases

Since Kind 2 can explore the traces of combinations of modes that can be activated from the
initial states, generating test cases is simple. Each test case is simply a trace of inputs, or
witness, triggering a different path of mode combinations in the DAG discussed above.

Each witness is logged in CSV file. A glue XML file lists all the test cases and provides additional
information such as the trace of mode combinations they triggered in the model.

But aren’t the witnesses still based on how the model is written?

Yes they are. There is no way to completely abstract the model/prototype away, nor is it
desirable. Generating test cases solely on the specification is not realistic unless the specification
is extremely strong and precise, which it very rarely is. (Also, if it was, it would arguably be
easier to produce the object code as a refinement of the specification using the B-method for
instance.)

18.3 Oracle generation

The point of generating these test cases is to eventually run them on an executable version of
the model to check whether it crashes and respects the specification.

For convenience, Kind 2 automatically generates an executable oracle along with the test cases.
It takes the form of a Rust project in the oracle subdirectory of the Kind 2 output directory.
The best way to learn about how this oracle behaves is to generate and read its documentation
by running cargo doc in said subdirectory and opening target/doc/<system>/index.html.

The idea is that this oracle will read comma-separated values on its standard input. These
values correspond to the inputs fed to the System Under Test (SUT), followed by the values
returned by the SUT. The oracle prints back the truth values of the guarantees / modes of the
original contract as comma-separated values. (How the outputs are organized depends on your
system and is currently not standardized. Refer to the oracle’s documentation.)

Keeping in mind a test case is a sequence of input values each corresponding to a step or cycle
for the SUT, the workflow is

• read inputs ins for current step from the test case file
• feed it to the SUT, obtaining some outputs outs
• write ins and outs as comma-separated values on the oracle’s standard input
• read the truth values for the original contract on the oracle’s standard output

Note: In general, the values for the contract depend on previous values of the SUT’s inputs
/ outputs. In the workflow described above, the oracle keeps running between each step so
that it can remember the information it needs from the previous steps to produce the next
guarantee/mode truth values.
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18.4 An example of a Test Execution Engine

A Test Execution Engine (TEE) compatible with Kind 2’s test cases and oracles is available
here:

https://github.com/kind2-mc/teas

Teas is written in Python, and is able to compare a binary with Kind 2’s test cases using the
oracle described above.

Disclaimer: Like Kind 2’s test generation feature, Teas is in an experimental and
unstable state.
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19 Compilation to Rust

Disclaimer: While this feature has been tested on rather large systems, is still
considered experimental. The Kind 2 team welcomes feedback / bug reports.

Rust is a very efficient language with a focus on safety. Kind 2 can compile Lustre to Rust,
as long as the input system does not have any unguarded pre’s, regardless of whether the
initial undefined value is actually used. Arrays and records are currently not supported.

Compilation is activated by the --compile true flag.

The result is a Rust project in the implem subdirectory of the Kind 2 output directory. The
project is extensively documented, you can read the documentation by running cargo doc in
the project directory and opening target/doc/<system>/index.html.

19.1 Technical details

The project produces a binary that reads inputs as comma-separated values from its standard
input and prints back outputs as comma-separated values on its standard output. Lustre’s
reals are compiled as 64-bits floats while ints become usize: 32-bits (64-bits) signed integers
on 32-bits (64-bits) platforms.

Note:* Technically, this conversion is unsound because the semantics of int is mathematical
(aka, infinite precision) integers, not machine integers, and that of real is mathematical real
numbers, not floating point numbers.

19.2 Assertions, properties and contracts

Compilation in Kind 2 works under the assumption that the model has been proved correct.
Therefore properties, guarantees, and modes are not compiled as they have already been proved
at model-level.

To be precise, since Kind 2 works with mathematical integers and reals, it can be the case that
the binary actually falsifies the specification for generating a floating point overflow, underflow,
and NaN or for using integer arithmetic modulo n. We are considering offering to compile
properties / guarantees / modes optionally through a flag.

Assertions and assumptions from the original models are compiled as internal checks and, when
falsified, will cause the binary to stop after outputting an error message pointing to the assertion
/ assumption falsified in the original Lustre model.
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20 Proof Certificates

One clear strength of model checkers, as opposed to proof assistants, say, is their ability to
return precise error traces witnessing the violation of a given safety property. Such traces not
only are invaluable for designers to correct bugs, they also constitute a checkable certificate.
For instance Kind 2 display a counterexample trace that shows the evolution of values of all
variables in the system up to a violation of the property. In most cases, it is possible to use
a counterexample for a safety property to direct the execution of the system under analysis to
a state that falsifies that property. In contrast, most model checkers are currently unable to
return any form of corroborating evidence when they declare a safety property to be satisfied
by the system. This is unsatisfactory in general since these are complex tools based on a variety
of sophisticated algorithms and search heuristics, and so are not immune to errors.

To mitigate this problem, Kind 2 accompanies its safety claims with a certificate, an artifact em-
bodying a proof of the claim. The certificate can then be validated by a trusted certificate/proof
checker, in our case the LFSC checker.

20.1 Certification chain

The certification process for Kind 2 is depicted in the graph below. Kind 2 generates two sorts
of safety certificates, in the form of SMT-LIB 2 scripts: one certifying the faithfulness of the
translation from the Lustre input model to the internal encoding, and another one certifying
the invariance of the input properties for the internal encoding of the input system. These
certificates are checked by cvc5, then turned into LFSC proof objects by collecting cvc5’s own
proofs and assembling them to form an overall proof that can be efficiently verified by the LFSC
proof checker.

Fig. 1: Certification process
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Trust is claimed at a higher level when both proof certificates are present. In practice, this means
that Kind 2 didn’t make any mistake in its model checking phase, and that the translation of
the Lustre model to the internal representation is faithful.

20.2 Producing certificates and proofs with Kind 2

To illustrate this process, we rely on the toy model below (add_two.lus). The model encodes
in Lustre a synchronous reactive component, add_two, that at each execution step other than
the first, outputs the maximum between the previous value of its output variable c and the
sum of the current values of input variables a and b. The value of c is initially 1.0. The model
is annotated with an invariance property stating that, at each step, the output c is positive
whenever both inputs are.

node add_two (a, b : real) returns (c : real) ;
var v : real;

P : bool;
let
v = a + b ;
c = 1.0 -> if (pre c) > v then (pre c) else v ;
P = (a > 0.0 and b > 0.0) => c > 0.0 ;
--%PROPERTY P;

tel

Kind 2 offers the possibility to generate two types of certificates, SMT-LIB 2 certificates and
actual proofs in the format of LFSC. It will do so only for systems whose properties (or contracts)
are all proven valid.

20.2.1 Requirements

Frontend certificates and proofs production require the user to have JKind installed on their
machine (together with a suitable version of Java).

SMT-LIB 2 certificates do not require anything additional except for an SMT solver to check
the certificates.

LFSC proofs production requires cvc5 (the binary can be specified with --cvc5_bin), its LFSC
proof signatures, and the LFSC checker for the final proof checking phase.
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LFSC checker

A bash script to download and build the LFSC checker is distributed with Kind 2:

lfsc/get-lfsc-checker.sh

The script also downloads the cvc5 LFSC signatures and generates an easy-to-use bash script
(lfsc-check.sh) to check LFSC proofs generated by Kind 2:

lfsc
|-- get-lfsc-checker.sh
|-- bin

|-- lfscc
|-- lfsc-check.sh

| ...
|-- signatures

|-- arith_programs.plf
|-- ...

20.2.2 SMT-LIB 2 certificates

These certificates are always produced but are only used as an intermediate step for LFSC proof
production. The user still has the possibility to get them as the final output of Kind 2 in a
convenient form. To do so, invoke Kind 2 (on the previous example add_two.lus) with the
following:

kind2 --certif true add_two.lus

For successful runs, the output of Kind 2 will contain:

Post-analysis: certification

Certificate checker was written in add_two.lus.out/certif/certificate.smt2
Generating frontend eq-observer with jKind ...
Generating frontend certificate
...
Certificate checker was written in add_two.lus.out/certif/FEC.kind2.out/certif/FECC.
↪→smt2

The certificates are located in the directory add_two.lus.out/certif which has the following
structure:

add_two.lus.out/certif
|-- certificate_checker
|-- certificate_prelude.smt2

(continues on next page)
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|-- certificate.smt2
|-- FEC.kind2
|-- FEC.kind2.out/certif

|-- FECC_checker
|-- FECC_prelude.smt2
|-- FECC.smt2
|-- observer_sys.smt2

|-- jkind_sys_lfsc_trace.smt2
|-- jkind_sys.smt2
|-- kind2_sys.smt2
|-- observer_lfsc_trace.smt2
|-- observer.smt2

In particular, it contains two scripts of interest: certificate_checker and FECC_checker.
They are meant to be run with the name of an SMT solver as argument and should produce
each three unsat results. The first one checks that the certificate of invariance is valid with the
provided SMT solver and the second script checks that the frontend certificate is valid.

> add_two.lus.out/certif/certificate_checker z3
Checking base case
unsat
Checking 1-inductive case
unsat
Checking property subsumption
unsat

> add_two.lus.out/certif/FEC.kind2.out/certif/FECC_checker z3
Checking base case
unsat
Checking 1-inductive case
unsat
Checking property subsumption
unsat

20.2.3 LFSC proofs

The other option offered by Kind 2, and the most trustworthy one, is to produce LFSC proofs.
This can be done with the following invocation:

kind2 --proof true add_two.lus

Successful runs emit outputs that contain lines such as:
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Post-analysis: certification

Generating frontend eq-observer with jKind ...
Generating frontend proof
...
Final LFSC proof written to add_two.lus.out/add_two.lus.1.lfsc

The important one is the last message that indicate the file in which the proof was written.
The directory produced by Kind 2 will have the following structure:

add_two.lus.out/
|-- add_two.lus.1.lfsc
|-- certificates.1

|-- FEC.kind2
|-- base.smt2
|-- frontend_base.smt2
|-- frontend_implication.smt2
|-- frontend_induction.smt2
|-- frontend_proof.lfsc
|-- implication.smt2
|-- induction.smt2
|-- jkind_sys.smt2
|-- jkind_sys_lfsc_trace.smt2
|-- kind2_phi.smt2
|-- kind2_phi_lfsc_trace.smt2
|-- kind2_sys.smt2
|-- kind2_sys_lfsc_trace.smt2
|-- obs_phi.smt2
|-- obs_phi_lfsc_trace.smt2
|-- observer.smt2
|-- observer_lfsc_trace.smt2
|-- proof.lfsc

It contains as many proofs (at the root) as there are relevant analysis performed by Kind 2 (for
modular and compositional reasoning). To make sure that the proof is an actual proof, one
needs to call the LFSC checker on the generated output, together with the correct signatures:

lfsc/bin/lfscc <cvc5 signatures in order> <kind 2 signature> add_two.lus.out/add_two.
↪→lus.1.lfsc

or use the convenient bash script generated by lfsc/get-lfsc-checker.sh:

lfsc/bin/lfsc-check.sh add_two.lus.out/add_two.lus.1.lfsc

The return code for either command execution is 0 when everything was checked correctly.

When the bash script is used and the whole proof is correct, the following line will be displayed:
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Valid LFSC proof!

When the LFSC checker is called instead, three lines will be displayed when both the proof of
invariance and the proof of correct translation by the frontend are valid:

success
success
success

In the case where only the invariance proof was produced and checked, the return code will still
be 0 but only a single success will be in the output.

20.2.4 Proof options

Kind 2 supports several options to control the format and granularity of proofs:

• --smaller_holes <bool> (default false) – By default, LFSC proofs generated by Kind
2 contain holes encoded as (trust ..) steps. This option reduces the size of holes in the
generated proofs, and thus, increases trust in Kind 2’s result. The option is disabled by
default as the more granular proofs take significantly more time to generate, are orders
of magnitude larger, and take longer time to verify than proofs with bigger holes. Note:
this option reduces the size of holes in the proofs and not their number, which is likely to
increase when it is enabled.

• --flatten_proof <bool> (default false) – Break the proof down into a sequence of
lemmas. The proof for each lemma is verified by the LFSC checker and erased immediately.
This option helps reduce the memory footprint of the LFSC checker and improve its
performance. It is recommended to enable this option with --smaller_holes. Note:
enabling this option will increase the number of success messages displayed by the LFSC
checker.

20.3 Contents of certificates

For a given problem (whose safety property is P), an internal certificate consists in only a pair
(k, φ) where φ is a k-inductive invariant of the system which implies the original properties.
SMT-LIB 2 certificates are in fact scripts whose check make sure that φ implies P and is k-
inductive. The LFSC proof is a formal proof that P is invariant in the system, using sub-proofs
of validity (unsatisfiability) returned by cvc5.
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20.4 LFSC signature

A proof system is formally defined in LFSC through signatures, which contain a definition of
the system’s language together with axioms and proof rules. The proof system used by cvc5 is
defined over a number of signatures, which are included in its source code distribution. Those
relevant to this work include signatures for propositional logic and resolution (boolean_rules.
plf); first-order terms and formulas, with rules for CNF conversion and abstraction to propo-
sitional logic (cnf_rules.plf); equality over uninterpreted functions (equality_rules.plf);
and real and integer linear arithmetic (arith_rules.plf).

cvc5’s proof system is extended with an additional signature (kind.plf) for k-inductive reason-
ing, invariance and safety. This signature also specifies the encoding for state variables, initial
states, transition relations, and property predicates. State variables are encoded as functions
from natural numbers to values. This way, the unrolling of the transition relation does not need
the creation of several copies of the state variable tuple x. For example, for the state vector x
= (y , z) with y of type real and z of type integer, the LFSC encoding will make y and z respec-
tively functions from naturals to reals and integers. So we will use the tuples (y(0) , z(0)), (y(1)
, z(1)), … instead of (y0 , z0), (y1 , z1), … where y0 , y 1 , …, z0 , z1, … are (distinct) variables.
Correspondingly, our LFSC encoding of a transition relation formula T[x, x’] is parametrized
by two natural variables, the index of the pre-state and of the post-state, instead of two tuples
of state variables. Similarly, I, P and φ are parametrized by a single natural variable.

The signature defines several derivability judgments, including one for proofs of invariance,
which has the following type:

invariant : Π I : N → formula.

Π T : N → N → formula.

Π I : N → formula.Type

It also contains various rules to build proofs of invariance by k-induction. This signature also
specifies how to encapsulate proofs for the front-end certificates by providing a additional judg-
ment, safe(I,T,P,I’,T’,P’), which can be derived only when invariant(I,T,P) is derivable and the
observational equivalence between (I,T,P) and (I’,T’,P’) is provable (judgment woe). Self con-
tained proofs of safety follow the sketch depicted below, where Smt stands for an unsatisfiability
rule whose proof tree is obtained, with minor changes, from a proof produced by cvc5.

Fig. 2: Proof sketch
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21 Contract Generation

Disclaimer: This feature is very experimental. In particular, the modes (if any) of
the contracts generated might not be exhaustive. In this case, Kind 2 will reject the
contract during the mode exhaustiveness check.

Contract generation is intended, at least for now, as a helper for users to getting started with
Kind 2’s contract language. Contract generation is activated by the flag --contract_gen.

Internally, this feature is implemented by running invariant generation on the input system up
to some depth, specified by flag --contract_gen_depth. Doing so will discover equivalence and
implication invariants over the system. The ones that talk only about the input / outputs of the
systems are used to create the contract dumped in a Lustre file in the output directory. Note
that the restriction to just input and output variables causes many of the generated invariants
to be discarded currently.
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22 Invariant Printing

This treatment minimizes the invariants used in the proof of the valid properties, and shows
them in the output without logging them on disk.
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23 Interpreter

The interpreter is a special mode where Kind 2 reads input values from a file and prints the
computed values for the output and local variables of a node at each step. If the Lustre file
contains two or more top nodes, a single node must be selected with either the command-line
option --lus_main <node_name> or a single --%MAIN annotation in the Lustre file.

To use the interpreter, run:

kind2 --enable interpreter <lustre_file> --interpreter_input_file <input_file>

You can specify the number of steps to run with the option --interpreter_steps <int>. By
default, the number of steps is determined by the input file.

23.1 Structure of the input file

The inputs must be specified in a JSON file.

The overall structure is as follows:

[
{

"var1": "42",
"var2": true,
"var3": "0.5"

},
{

"var1": "24",
"var2": false,
"var3": "1.0/2.0"

}
]

The top-level JSON array corresponds to the successive time steps. Each time step is described
by a JSON object associating to each input variable its value for this time step.

NOTE: Kind2 also accepts the CSV format for backward compatibility reasons. However, it
does not support records, arrays and tuples. Please give your input file the adequate extension
(*.json or *.csv) in order to indicate to Kind2 which format you are using.
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23.2 Integers and reals

As in the above example, integers and reals should be written as strings in order to avoid a
potential loss of precision or an integer overflow while parsing the file. Nevertheless, small
integers can be written as native JSON integers without problem.

23.3 Records

Record values can be expressed using a JSON object.

For instance, a variable c of type { re: real; im: real } can be assigned as follows:

[
{

"c": { "re": "-1.0", "im": "0.25" }
}

]

23.4 Arrays

Array values can be expressed using a JSON array.

For instance, a variable a of type bool^3^2 can be assigned as follows:

[
{

"a": [[true, true, false], [false, true, true]]
}

]

23.5 Tuples

The JSON format does not support tuples by default. However, Kind2 extends the JSON syntax
so that tuples can be easily expressed.

For instance, a variable t of type [int, bool, real] can be assigned as follows:

[
{
"t": ("36", false, "5.0")

}
]
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An alternative syntax using a JSON object is allowed in case you want to produce a valid JSON
file:

[
{

"t": { "0":"36", "1": false, "2":"5.0" }
}

]
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24 Inductive Validity Core

The inductive validity core generation is a post-analysis treatement that computes a minimal
subset of the model elements (assumptions, guarantees, stateful equations, or node calls) that
are sufficient to prove all valid properties.

To enable inductive validity core generation, run

kind2 <lustre_file> --ivc true

24.1 Options

• --ivc_category {node_calls|contracts|equations|assertions|annotations} (de-
fault: all categories) – Minimize only a specific category of elements, repeat option to
minimize multiple categories

• --ivc_only_main_node <bool> (default false) – Only elements of the main node are
considered in the computation

• --ivc_all <bool> (default false) – Compute all the Minimal Inductive Validity Cores
• --ivc_approximate <bool> (default true) – Compute an approximation (superset) of a

MIVC. Ignored if --ivc_all or --ivc_must_set is true
• --ivc_smallest_first <bool> (default false) – Compute a smallest IVC first. If

--ivc_all is false, the computed IVC will be a smallest one
• --ivc_must_set <bool> (default false) – Compute the MUST set in addition to the

IVCs
• --print_ivc <bool> (default true) – Print the inductive validity core computed
• --print_ivc_complement <bool> (default false) – Print the complement of the in-

ductive validity core computed (= the elements that were not necessary to prove the
properties)

• --minimize_program {no|valid_lustre|concise} (default no) – Minimize the source
Lustre program according to the inductive validity core(s) computed

• --ivc_output_dir <string> (default <INPUT_FILENAME>) – Output directory for the
minimized programs

• --ivc_uc_timeout <int> (default 0) – Set a timeout for each unsat core check sent to
the solver

• --ivc_precomputed_mcs <int> (default 0) – When computing all MIVCs, set a cardi-
nality upper bound for the precomputed MCSs (helps prune space of candidates)
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24.2 Example

Let’s consider the following Lustre code:

contract fSpec(u,v: real) returns(r: real);
let

guarantee r >= 0.0;
guarantee true -> r >= pre(r);
guarantee r >= u;
guarantee r >= v;

tel;

node f(u, v : real) returns (r : real);
(*@contract import fSpec(u,v) returns (r) ; *)
var m1,m2: real;
let

m1 = if v > u then v else u;
m2 = if m1 > 0.0 then m1 else 0.0;
r = m2 -> if pre(r) > m1 then pre(r) else m1;

tel;

node main(x, y : real) returns (P : bool);
var a,b : real;
let

a = f(x,y);
b = f(y,x);
P = a >= x and a >= y and b >= x and b >= y;
--%PROPERTY P;

tel;

If we are interesting in determining which guarantees of the contract fSpec of f are needed to
prove P, we should run this command:

kind2 <lustre_file> --ivc true --ivc_category contracts --ivc_only_main_node false --
↪→compositional true

• --ivc_category contracts: because we are only interested in minimizing the contract
fSpec

• --ivc_only_main_node false: because fSpec is not the contract of the main node, so
we need to consider all nodes

• --compositional true: as we want to minimize the contract of f and not its implemen-
tation, we need to enable compositional analysis

We obtain the following inductive validity core:

IVC (2 elements):
(continues on next page)
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(continued from previous page)

Node f
Guarantee fSpec[l11c12].guarantee[l6c4][3] at position [l6c4]
Guarantee fSpec[l11c12].guarantee[l7c4][4] at position [l7c4]

24.3 Minimizing over a subset of the assumptions/guarantees

If you are interested in computing an IVC among a subset of the assumptions or guarantees, you
can use the category annotations. The assumptions and guarantees that should be considered
must be preceded by the keyword weakly. All the other assumptions and guarantees will be
considered as always present when computing the IVCs.

For instance, we can modify the previous example as follows:

contract fSpec(u,v: real) returns(r: real);
let

weakly guarantee r >= 0.0;
guarantee true -> r >= pre(r);
weakly guarantee r >= u;
guarantee r >= v;

tel;

kind2 <lustre_file> --ivc true --ivc_category annotations --ivc_only_main_node false -
↪→-compositional true

We obtain the following inductive validity core:

IVC (1 elements):
Node f
Guarantee fSpec[l11c12].weakly_guarantee[l6c4][3] at position [l6c4]

24.4 Computing all Inductive Validity Cores

If we want to compute ALL the minimal inductive validity cores, we can use the following flags:

kind2 <lustre_file> --ivc true --ivc_all true

• --ivc_all true: specify that we want to compute all the IVCs
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25 Minimal Cut Set

The minimal cut set generation is a special mode where Kind 2 computes a minimal subset
of the model elements (assumptions, guarantees, stateful equations, or node calls) whose no
satisfaction leads to the violation of a property.

To enable minimal cut set generation, run

kind2 <lustre_file> --enable MCS

25.1 Options

• --mcs_category {annotations|node_calls|contracts|equations|assertions} (de-
fault: annotations) – Consider only a specific category of elements, repeat option to
consider multiple categories

• --mcs_only_main_node <bool> (default false) – Only elements of the main node are
considered in the computation

• --mcs_all <bool> (default false) – Specify whether all the Minimal Cut Sets must be
computed or just one

• --mcs_approximate <bool> (default true) – Compute a MCS which is minimal with
respect to all the counterexamples of the same length that the first counterexample found.
This solution can be considered an approximation of a global one. Ignored if --mcs_all
is true

• --mcs_max_cardinality <int> (default -1) – Only search for MCSs of cardinality lower
or equal to this parameter. If -1, all MCSs will be considered

• --mcs_per_property <bool> (default true) – If true, MCSs will be computed for each
property separately

• --print_mcs <bool> (default true) – Print the minimal cut set computed
• --print_mcs_complement <bool> (default false) – Print the complement of the minimal

cut set computed (this is equivalent to computing a Maximal Unsafe Abstraction)
• --print_mcs_legacy <bool> (default false) – Print the minimal cut set using the legacy

format
• --print_mcs_counterexample <bool> (default false) – Print a counterexample for each

MCS found (ignored if --print_mcs_legacy is true)
• --mcs_per_property <bool> (default true) – If true, MCSs will be computed for each

property separately

98



25.2 Example

Let’s consider the following Lustre code:

contract spec(x,y: real) returns(z: real);
let

weakly assume x = -y;
weakly assume x >= 0.0;

tel;

node main(x, y : real) returns (z : real);
(*@contract import spec(x,y) returns (z) ; *)
var P : bool;
let

z = x + y;
P = z = 0.0;
--%MAIN;
--%PROPERTY P;

tel;

If you are interesting in determining a minimal set of the weak assumptions of the contract
fSpec whose no satisfaction leads to the violation of P, you can run this command:

kind2 <lustre_file> --enable MCS --mcs_category annotations

Note that --mcs_category annotations is not required since it is the default value.

The following minimal cut set is printed:

MCS (1 elements) for property P:
Node main
Assumption spec[l9c12].weakly_assume[l4c4][1] at position [l4c4]

In the example above, the weakly keywork is used to annotate the assumptions and guarantees
to consider for the MCS computation (Kind2 will only try to remove these assumptions and
guarantees, all the others will be kept).

Alternatively, if we want to compute a MCS over all the assumptions and guarantees, we can
change the category to contracts:

kind2 <lustre_file> --enable MCS --mcs_category contracts
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26 Contract Check

Kind 2 provides an option to check the realizability of contracts and refinement types. When
an input model includes imported nodes or refinement types, it is particularly important to
verify that their associated contracts are realizable, i.e., a component can be constructed such
that, for any input satisfying the contract assumptions, there exists some output value that the
component can produce to meet the contract guarantees.

To check the contracts of nodes and functions, run:

kind2 --enable CONTRACTCK <lustre_file>

You can specify a particular node or function to analyze using --lus_main <node_name>, and
a specific refinement type using --lus_main_type <type_name>.

If Kind 2 is able to prove some contract unrealizable and the --print_deadlock flag is true,
Kind 2 will show a deadlocking trace such that all states except the last one satisfy the contract
constraints. If the trace only has one state, the state shows input values such that no initial
state values satisfy the contract constraints (including the state values chosen as sample). For
traces with more than one state, the trace is such that no next state values satisfy the contract
constraints from the second-to-last state giving the input values of the last state. Kind 2 will
also show a set of conflicting constraints for the last state in the trace.

When the --check_contract_is_sat flag is true, Kind 2 will also check whether the unrealiz-
able contract is at least satisfiable, i.e., it is possible to construct a component such that for at
least one input sequence allowed by the contract assumptions, there is some output value that
the component can produce that satisfies the contract guarantees.

In addition, Kind 2 will check the realizability of the component’s environment. This check
is also important for the top-level contract, as an unrealizable environment specification can
lead to the same flawed compositional proof arguments as an unrealizable leaf-level component
contract. You can disable this check by passing --check_environment false.
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27 Assumption Generation

In the early stages of model development and analysis, properties of system components often
fail to hold because the assumptions made about a component’s environment are insufficient to
guarantee these properties, even when component’s behavior is correctly specified. When this
happens, the system designer must study the counterexample provided by Kind 2, pinpoint the
cause, and identify possible restrictions on the environment that the properties need in order
to hold — which were perhaps assumed by the designer but were not made explicit.

For instance, consider the following Lustre program:

node Arbiter (s1,s2: bool; e1,e2:int) returns(o: int);
(*@contract
guarantee "G1" s1 => o=e1;
guarantee "G2" s2 => o=e2;

*)
let
if s1 and s2 then
o = any { o:int | o = e1 or o = e2 };

elsif s1 then
o = e1;

else
o = e2;

fi
tel

If we run Kind 2 to check guarantees G1 and G2, Kind 2 determines the properties are invalid,
providing a counterexample for each of them. In the first counterexample, s1 and s2 are
true initially, and the output is equal to the value of e2, which falsifies G1. In the second
counterexample, s1 and s2 are true initially, and the output is equal to the value of e1, which
falsifies G2.

From the description of the counterexamples, it is evident that one potential missing assumption
is that s1 and s2 are never simultaneously true. If that is indeed the case, explicitly stating
this assumption in the contract of the node, allows Kind 2 to prove both properties valid.

Generating the missing assumptions for straightforward examples like the one above is not
very difficult. However, in more realistic scenarios, this task can become quite challenging. To
help system designers in those situations, Kind 2 offers a post-analysis that can be enabled
by passing the command-line option --assumption_gen true. When this option is enabled,
Kind 2 will automatically generate assumptions that are strong enough to prove the set of
falsified properties in the verification analysis while not being overly restrictive. Note that just
finding sufficient assumptions is not challenging. The challenge is to find minimally restrictive
assumptions which can then be recognized as realistic by the designer.

For the example above, Kind 2 generates the assumption: (not s2) or (not s1) or (e1 =
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e2). Notice that this assumption is a weaker version of the one mentioned above, as it considers
a third case where the inputs e1 and e2 equal.

The functionality generates one-state constraints on a node’s environment, but it currently lacks
the capability to generate two-state properties, which presents a significantly more complex
challenge.
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28 Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.
“License” shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.
“Licensor” shall mean the copyright owner or entity authorized by the copyright owner
that is granting the License.
“Legal Entity” shall mean the union of the acting entity and all other entities that control,
are controlled by, or are under common control with that entity. For the purposes of this
definition, “control” means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such
entity.
“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted
by this License.
“Source” form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.
“Object” form shall mean any form resulting from mechanical transformation or trans-
lation of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.
“Work” shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).
“Derivative Works” shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of authorship.
For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.
“Contribution” shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or
by an individual or Legal Entity authorized to submit on behalf of the copyright owner.
For the purposes of this definition, “submitted” means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not
limited to communication on electronic mailing lists, source code control systems, and
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issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose
of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”
“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom
a Contribution has been received by Licensor and subsequently incorporated within the
Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Con-
tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works
in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contrib-
utor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, of-
fer to sell, sell, import, and otherwise transfer the Work, where such license applies only
to those patent claims licensable by such Contributor that are necessarily infringed by
their Contribution(s) alone or by combination of their Contribution(s) with the Work to
which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or
a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:
(a) You must give any other recipients of the Work or Derivative Works a copy of this

License; and
(b) You must cause any modified files to carry prominent notices stating that You

changed the files; and
(c) You must retain, in the Source form of any Derivative Works that You distribute,

all copyright, patent, trademark, and attribution notices from the Source form of
the Work, excluding those notices that do not pertain to any part of the Derivative
Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one of the following places:
within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational
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purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution notices
cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution
of Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution in-
tentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions. Notwith-
standing the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-
censor provides the Work (and each Contributor provides its Contributions) on an “AS
IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-
press or implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or re-
distributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You
for damages, including any direct, indirect, special, incidental, or consequential damages
of any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such
Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-
ranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.
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END OF TERMS AND CONDITIONS
Copyright {2015-2022} {Board of Trustees of the University of Iowa}
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.
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